The Chemistry of ALD of High-K Dielectrics Selection of Precursors, and Substrates

Charles B. Musgrave

Joseph Han, Collin Mui, Yuniarto Widjaja and Ye Xu

Chemical Engineering & Materials Science and Engineering Stanford University, Stanford, CA

Why Do Simulation ?

As technology proceeds to the nanoscale regime and new materials are introduced, it is increasingly critical to develop simulation capabilities:

- for robust process design and to design benign characteristics into processes ab initio
- to guide experimental work
- to investigate new and radical alternatives beyond experimental capabilities
- to provide an intellectual framework for the education of future technology workers

"Modeling and simulation is the "glue" necessary to connect all the elements of future technology development" SRC Consultative Working Group - Multiscale/Multi Phenomena Modeling and Simulation

Traditional TCAD

Process Simulation

Device Simulation

www.silvaco.com

TCAD has been successfully implemented to computationally prototype processes such as oxidation, ion implantation, and dopant profile evolution. However, development of film deposition and etch processes still remains predominantly empirical. Models that are developed are extrapolations and do not contain detailed chemical kinetics and lack basic details of the surface chemistry.

Chemistry of Electronic Materials

Reactants and products are local minima.

Transition states are saddle points.

Which pathways are active and what are their rates?

Stanford University Chemical Engineering and Materials Science and Engineering

chasm@stanford.edu 4

NH₃ on Si (100)-(2x1)

Insertion Mechanism:

- 1. NH₃(g) initially adsorbs on the "down" Si atom.
- 2. NH₃(a) dissociates into $NH_2(a)$ and H(a).
- 3. $NH_2(a)$ inserts into Si-Si dimer bond.
- 4. NH₂(a) dissociates into NH(a) and H(a).
- Insertion barrier is higher than desorption barrier.
- TPD (Chen, 1992)
 - 73% of $NH_2(a)$ species recombine with H(a)

Stanford University Chemical Engineering and Materials Science and Engineering

Predicting Reaction Rates

Stanford University Chemical Engineering and Materials Science and Engineering

chasm@stanford.edu 6

What is Quantum Chemistry?

Quantum chemistry is a set of methods developed for solving the Schrodinger equation to determine the electronic structure of a system.

Stanford University Chemical Engineering and Materials Science and Engineering

Typical Errors for QC Methods

For a set of 40 reactions with reliable "experimental" barriers and enthalpies of reaction we obtain the following RMS and maximum errors:

	Barriers		Enthalpies	
	RMS Error	MAD	RMS Error	MAD
B3LYP (3)	3.59	10.8	2.25	7.01
G2 (7)	3.3	10.1	1.26	7.51
CCSD(T) (7)	2.61	4.4	1.4	3.6
KMLYP (3)	1.3	4.2	1.4	3.5
CBS-APNO (8)	1.26	4.4	1.2	3.3

Energies is kcal/mol

- CCSD(T) limited to systems with 8-10 atoms.
- CBS-APNO is limited to systems with only 3 to 4 atoms.
- B3LYP and KMLYP can simulate systems of more than 50 atoms.

Kang and Musgrave, J. Chem. Phys. 115, 11040 (2001).

Computational Cost

Single-point energy calculations. Run on 1 processor of 128 processor (2GHz Athlon) cluster.

Geometry optimizations and frequencies take significantly longer (5 to 20x typically).

Use efficient methods (e.g. B3LYP DFT) and clusters to model extended systems.

High-K Choices

Dielectric Material	K	
silicon oxide	SiO ₂	3.5
silicon nitride	Si ₃ N ₄	7
aluminum oxide	Al ₂ O ₃	9
zirconium oxide	ZrO ₂	25
hafnium oxide	HfO ₂	30 - 40

Candidate materials:

 ZrO_2 , HfO_2 , and Al_2O_3 are favorable candidates for the gate dielectric

- 1. Higher dielectric constant than SiO₂
- 2. Stable with respect to SiO₂ and silicate formation

Challenges:

- 1. Processing unknown for high-K materials
- 2. Uniform deposition required
- 3. Good dielectric properties required (interface states critical)
- 4. Stoichiometry needs to be controlled
- 5. Films chemically very stable and difficult to etch
- 6. Interlayer oxide formation
- 7. Dopant penetration and crystallization

The ALD Process

Self-terminating Reactions

- ALD consists of an alternating sequence of self-terminating **surface** reactions
- Ideally, each step should form a monolayer
- Precursors chosen to not self-react

Advantages of ALD

- Excellent conformality
- Excellent film thickness control
- Excellent uniformity
- Excellent control of stoichiometry
- Simpler reactor and process design

- Process is slow
- Submonolayer coverage
- Interlayer SiO₂ below ZrO₂ and HfO₂
- Contamination

Adapted from S. George et al.

Step Coverage = $\frac{b}{a} \times 100(\%)$

TEM micrographs of AI_2O_3 obtained with ALD and conventional MOCVD process (courtesy of IPS-Tech)

The ALD Process

Questions:

- What are the ALD chemical mechanisms?
- What are the optimum ALD process conditions?
- How to select an ALD precursor?
- How do you prepare a surface for ALD?
- What causes submonolayer growth?
- What causes contamination?
- Can an ALD process be transferred to different substrates?
- Can ALD be done selectively?

Adapted from S. George.

Surface Reaction Models for ZrO₂ and HfO₂ ALD

Comparison of ZrO₂ and HfO₂ ALD With MCl₄

MCI₄ Half-Reaction:

A: ZrO_2 -OH* + $ZrCI_4$ = ZrO_2 -O-Zr-CI * + HCI B: HfO_2 -OH* + $HfCI_4$ = HfO_2 -O-Hf-CI* + HCI

H₂O Half-Reaction:

A: ZrO_2 -O-Zr-Cl* + H_2O = ZrO_2 -O-Zr-OH* + HCl B: HfO_2 -O-Hf-Cl* + H_2O = HfO_2 -O-Hf-OH* + HCl

- Chemistry of Zr and Hf is remarkably similar: Ligand exchange reactions
- Precursor desorption predicted for both cases submonolayer cause?
- Reverse reaction and byproduct readsorption predicted CI contamination?
- Relatively high temperatures are required (300-350°C).

Widjaja and Musgrave, JCP 117, 1931 (2002).

Stanford University Chemical Engineering and Materials Science and Engineering

HfO₂ ALD on SiO₂ and HfO₂ Substrates

- Substrate only affects kinetics of initial layer if full monolayer growth occurs.
- Temperature determined by barrier relative to trapped intermediate.
- Same issues as with as-grown film.

Han, Gao, Garfunkle, Widjaja, Musgrave, Surf. Sci. (2003).

ZrCl₄ ALD Reactions on Multiple OH Sites on SiO₂

chasm@stanford.edu 16

Hydroxylation of Ge(100) with H₂O

Oxide species thermodynamically less stable on the Ge(100) surface

Stanford University Chemical Engineering and Materials Science and Engineering

Surface Preparation of Ge: Nitridation with NH₃

Stanford University Chemical Engineering and Materials Science and Engineering

Hydroxylation of Ge with H_2O_2

Reactions of HOOH

- Two reaction pathways.
- "OH Dis" pathway generates surface
 H, and has lower barrier
- "OH-OH Dis" pathway produces two OH groups, which are more stable thermodynamically.
- Also studied further oxidation to bridge-bonded H-O-OH species.

chasm@stanford.edu 19

Reaction of ZrCl₄ on Hydroxylated Ge

Stanford University Chemical Engineering and Materials Science and Engineering

HfO₂ ALD Reactions Using Hf(NMe₂)₄

Will ALD growth rate be slower with $Hf(NMe_2)_4$ because it is larger than $HfCl_4$?

HfCl₄

 $Hf(NMe_2)_4$

Stanford University Chemical Engineering and Materials Science and Engineering

Thermochemistry: Relative Bond Strengths

- 1. Hf-O bond formed and O-H bond broken in both cases
- 2. Broken bond is stronger relative to formed bond in Metal-chloride case
- 3. Formed bond is stronger relative to broken bond in Metal-alkylamine case

Bond Energies (kcal/mol)				
	Ο	CI	N(CH ₃) ₂	
H-X	114.22	95.04	91.52	
Hf-X ₄	121.09	103.51	81.03	

HfO₂ ALD Reactions: Hf(NMe₂)₄ versus HfCl₄

- $Hf(N(CH_3)_2)_4$ reaction is exothermic and does not exhibit trapping of intermediate state.
- $Hf(N(CH_3)_2)_4$ barrier is lower: lower ALD temperature.
- $Hf(N(CH_3)_2)_4$ shown to have higher growth rate than metal chloride process less precursor desorption and higher surface OH site concentration at reaction temperatures. Han, Gordon, and Musgrave, Accepted (2004).

Stanford University Chemical Engineering and Materials Science and Engineering

1st Half-reaction Non-Growth Ligand Exchange

Reaction with Hf(X)₄:

 $HfO_{2}-OH^{*} + Hf(N(CH_{3})_{2})_{4} = HfO_{2}-O-Hf-N(CH_{3})_{2}^{*} + HN(CH_{3})_{2}$ $HfO_{2}-OH^{*} + Hf(N(CH_{3})_{2})_{4} = HfO_{2}-N(CH_{3})_{2}^{*} + Hf(N(CH_{3})_{2})_{3}OH$

ALD Ligand-Exchange Reaction Non-Growth Ligand Exchange

Stanford University Chemical Engineering and Materials Science and Engineering

Forward Reaction Rates

Stanford University Chemical Engineering and Materials Science and Engineering

HfCl₄ Forward and Reverse Reaction Competition

1/T (K⁻¹ 10⁻³)

	А	n	E _a /R
HfCl ₄ First Half-Reaction - Forward	2.81E+12	0.472	1.05E+04
HfCl ₄ Second Half-Reaction - Forward	3.18E+11	0.450	9.05E+03
HfCl ₄ First Half-Reaction - Reverse	1.51E+10	-0.321	2.34E+03
HfCl ₄ Second Half-Reaction - Reverse	7.90E+11	0.197	2.69E+03

Hf(N(CH₃)₂)₄ Forward and Reverse Reaction Competition

1/T (K⁻¹ 10⁻³)

	A	n	E _a /R
Hf(N(CH ₃) ₂) ₄ First Half-Reaction - Forward	4.01E+12	0.017	5.68E+03
Hf(N(CH3)2)4 Second Half-Reaction - Forward	5.72E+11	0.222	1.68E+03
Hf(N(CH ₃) ₂) ₄ First Half-Reaction - Reverse	2.01E+09	0.344	9.72E+03
Hf(N(CH3)2)4 Second Half-Reaction - Reverse	1.08E+12	0.341	1.28E+04

Alkoxides as Alternative ALD Precursor

Metal Chlorides

- Commonly used
- Simple structure
- HCl by-product
- Precursor desorption
- High deposition temperatures

• Metal and oxygen precursor

- Organic by-product.
- Possibility of mixed thin films.
- Reactivity can be tuned.

ALD of HfO₂ with Hf(OEt)₄ and H₂O

Stanford University Chemical Engineering and Materials Science and Engineering ch

ALD of HfO_2 with $Hf(OEt)_4$ and H_2O

ALD with HfCl₄ and Hf(OEt)₄ as Oxygen Source

ALD with HfCl₄ and Hf(OEt)₄ as Oxygen Source

Alternative Mechanism

Alternative Mechanism for EtCl Elimination

Incomplete CI Elimination

Stanford University Chemical Engineering and Materials Science and Engineering

Metal Oxide ALD Precursor Selection

Metal chlorides:

- Require high temperatures
- Almost thermalneutral
- Lead to trapped intermediates
- Readsorption of HCI-etching and corrosion
- CI contamination
- Competitive non-growth ligand exchange reactions

Alkylamides:

- Require lower temperatures
- Less strongly trapped intermediates
- Thermodynamic driving force
- Less competition with non-growth ligand exchange reactions

Alkoxides:

- Require higher temperatures
- Two strongly trapped intermediates and strongly bound by-products
- Little thermodynamic driving force
- Various competitive reactions
- Very expensive oxygen source
- Various contamination pathways

ALD on Organics

AS-ALD Motivation

- Etching of HfO₂ and ZrO₂ is difficult.
- High-K etch may require specialized masks.

Area Selective ALD

- AS-ALD requires patterning the surface with an agent which inhibits ALD.
- Masking agent must not thermally decompose at ALD temperature.
- Masking agent must lead to highly selective ALD growth.
- ALD precursors should be chosen which react at low temperatures.
- ALD precursors must have fast kinetics and high growth rates to reduce the number of ALD cycles the masking agent must be exposed to.

ALD for Contact to Molecular Devices

- Choose molecular functionalization to initiate ALD
- Gentle metallization
- Controlled contact formation
- Molecule left intact.

With Bent, and McIntyre

chasm@stanford.edu 37

Reaction between TMA and SAMs

Stanford University Chemical Engineering and Materials Science and Engineering

Reaction Barrier for TMA on SAMs

😕 Stanford University Chemical Engineering and Materials Science and Engineering

Alkylamide ALD on Amine Terminated SAM?

HfO₂ ALD on NH* Terminated Si and Ge

Stanford University Chemical Engineering and Materials Science and Engineering

Hf Nitride or Oxynitride ALD?

Stanford University Chemical Engineering and Materials Science and Engineering

Conclusions

- Details of high-K ALD mechanisms predicted including kinetics
- ALD temperature is determined by barrier relative to trapped intermediate or desorption of byproducts (for alkoxides)
- Submonolayer growth due to a combination of sterics, desorption of precursor and limited surface reactive sites.
- Precursors should have exothermic reactions for ALD reactions: Chlorides a poor choice
- Alkylamides are most promising high-K ALD precursors: low T, low contamination, best choice for area-selective ALD
- Substrates only affect initial ALD reaction
- Other substrates (Ge, nitrides, organics) work for these ALD chemistries if
- they are OH functionalized or NH functionalized (for alkylamide precursor)

Acknowledgments:

Students: Yuniarto Widjaja, Collin Mui, Joseph Han, Ye Xu

Collaborators: Roy Gordon (Harvard), Steve George (Colorado), Rick Garfunkel (Rutgers), Stacey Bent (Stanford)

INTEL, Novellus, Motorola, Texas Instruments, Torrex, Applied Materials

CEBSP (NSF, SRC), MARCO (SRC, DARPA), ONR

