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Chemistry

Design of new processes that are 
environmentally benign can be greatly aided by

an understanding of the process chemistry
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Why Do Simulation ?Why Do Simulation ?

As technology proceeds to the nanoscale regime and new materials are introduced, 

it is increasingly critical to develop simulation capabilities:

• for robust process design and to design benign characteristics into processes ab initio

• to guide experimental work

• to investigate new and radical alternatives beyond experimental capabilities

• to provide an intellectual framework for the education of future technology workers

“Modeling and simulation is the “glue” necessary to connect 

all the elements of future technology development”
SRC Consultative Working Group - Multiscale/Multi Phenomena Modeling and Simulation
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Traditional TCADTraditional TCAD

www.silvaco.com

Process Simulation Device Simulation

TCAD has been successfully implemented to computationally prototype processes
such as oxidation, ion implantation, and dopant profile evolution. However, 
development of film deposition and etch processes still remains predominantly
empirical. Models that are developed are extrapolations and do not contain detailed
chemical kinetics and lack basic details of the surface chemistry. 
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Transition
States

Chemistry of Electronic MaterialsChemistry of Electronic Materials
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Reactants and products are local minima.

Transition states are saddle points.

Reaction rate a function of the activation
barrier and temperature

Vibrational frequencies can identify species,
be used for zero-point and thermal
corrections, and pre-exponential factors.

Enthalpy of Reaction driving force for rxn

Which pathways are active and what

are their rates?

SiH3NH2
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1.  NH3(g) initially
adsorbs on the
“down” Si atom.

•• Insertion barrier is higherInsertion barrier is higher
than desorption barrier.than desorption barrier.

•• TPD (Chen, 1992)TPD (Chen, 1992)
•• 73% of NH73% of NH22(a) species(a) species

recombine with H(a)recombine with H(a)

Insertion Mechanism:

2.  NH3(a) dissociates
into NH2(a)  and
H(a).

3.  NH2(a) inserts into
Si-Si dimer bond.

4.  NH2(a) dissociates
into NH(a) and H(a).

NH2(b) + H(a)

NH(b) + 2 H(a)

Widjaja and Musgrave, Phys. Rev. B 64, 205303 (2001).
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Reactants Products

Tunneling (H 
transfer reactions)

Zero-Point
Energy

Thermal Energy

Activation 
Energy

Input for Transition State Theory:
Initial state and Transition State:
Structures
Rotational inertia
Energies
Vibrational frequencies

E

Rate of Reaction
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Predicting Reaction RatesPredicting Reaction Rates

Senosiain, Musgrave, and Golden, J. Phys. Chem. A 105, 1669-1675 (2001).
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What is Quantum Chemistry?What is Quantum Chemistry?

Quantum chemistry is a set of methods developed for solving the
Schrodinger equation to determine the electronic structure of a system.
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Basis functions
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ψ ˆ H ψ = 0The Variational 
Principle

The Schrödinger
equation

The Hamiltonian:

A lot of math and
approximations

1s 2s 3s 3px 3dz
2 3dxy

Nuclear
Coordinates,
n and s.

Input

Basis functions
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Barriers Enthalpies
RMS Error MAD RMS Error MAD

B3LYP (3) 3.59 10.8 2.25 7.01
G2 (7) 3.3 10.1 1.26 7.51
CCSD(T) (7) 2.61 4.4 1.4 3.6
KMLYP (3) 1.3 4.2 1.4 3.5
CBS-APNO (8) 1.26 4.4 1.2 3.3

Typical Errors for QC MethodsTypical Errors for QC Methods

For a set of 40 reactions with reliable “experimental” barriers and
enthalpies of reaction we obtain the following RMS and maximum errors:

•• CCSD(T) limited to systems with 8-10 atoms. CCSD(T) limited to systems with 8-10 atoms.
•• CBS-APNO is limited to systems with only 3 to 4 atoms. CBS-APNO is limited to systems with only 3 to 4 atoms.
•• B3LYP and KMLYP can simulate systems of more than 50 atoms. B3LYP and KMLYP can simulate systems of more than 50 atoms.

Energies is kcal/mol

Kang and Musgrave, J. Chem. Phys. 115, 11040 (2001). 
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Timing vs System Size
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MP2 (5)
QCISD(T) (7) 
CBS-QCI (APNO) (8)

Computational CostComputational Cost

1 day

1 week

1 year

Single-point energy calculations. Run on 1 processor of 128 processor (2GHz Athlon) cluster.

Surfaces Solid State RXNs

Geometry optimizations and frequencies take significantly longer (5 to 20x typically). 

Gas Phase

Use efficient methods (e.g. B3LYP DFT) and clusters to model extended systems.

Si4 Si20Si12 Si28 Si36
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High-K ChoicesHigh-K Choices

Candidate materials:
ZrO2 ,HfO2 ,and Al2O3 are favorable candidates for the gate dielectric

1. Higher dielectric constant than SiO2

2. Stable with respect to SiO2 and silicate formation
Challenges:

1. Processing unknown for high-K materials
2. Uniform deposition required
3. Good dielectric properties required (interface states critical)
4. Stoichiometry needs to be controlled
5. Films chemically very stable and difficult to etch
6. Interlayer oxide formation
7. Dopant penetration and crystallization

Dielectric MaterialsDielectric Materials κκ

silicon oxide

silicon nitride

aluminum oxide

hafnium oxide

zirconium oxide

SiO2

Si3N4

Al2O3

HfO2

ZrO2

3.5

7

9

30 - 40

25
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The ALD ProcessThe ALD Process

Self-terminating Reactions

• ALD consists of an alternating sequence of
self-terminating surface reactions
• Ideally, each step should form a monolayer
• Precursors chosen to not self-react

Advantages of ALD

• Excellent conformality
• Excellent film thickness control
• Excellent uniformity
• Excellent control of stoichiometry
• Simpler reactor and process design

TEM micrographs of Al2O3 obtained with ALD and conventional MOCVD
process (courtesy of IPS-Tech)

Adapted from S. George et al.

ALD Issues
• Process is slow

• Submonolayer coverage

• Interlayer SiO2 below ZrO2
and HfO2

• Contamination

PURGEPURGEPURGEPURGEPURGEPURGEPURGEPURGE

A PULSEA PULSE A PULSEA PULSE A PULSEA PULSE

B PULSEB PULSEB PULSEB PULSE

B Layer

A Layer

Functionalized SubstrateFunctionalized Substrate
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The ALD ProcessThe ALD Process

Questions:Questions:

• What are the ALD chemical mechanisms?
• What are the optimum ALD process
conditions?
• How to select an ALD precursor?
• How do you prepare a surface for ALD?
• What causes submonolayer growth?
• What causes contamination?
• Can an ALD process be transferred to
different substrates?
• Can ALD be done selectively?

Adapted from S. George.

PURGEPURGEPURGEPURGEPURGEPURGEPURGEPURGE

A PULSEA PULSE A PULSEA PULSE A PULSEA PULSE

B PULSEB PULSEB PULSEB PULSE

B Layer

A Layer

Functionalized SubstrateFunctionalized Substrate
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Surface Reaction Models for ZrOSurface Reaction Models for ZrO22 and HfO and HfO2 2 ALDALD

HfCl4(g)H2O(g)

Hf-Cl* Hf-OH*

HfO2
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Comparison of ZrOComparison of ZrO22 and HfO and HfO22 ALD With MCl ALD With MCl44
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MCl4 Half-Reaction:

A: ZrO2-OH* + ZrCl4 = ZrO2-O-Zr-Cl * + HCl

B: HfO2-OH* + HfCl4 = HfO2-O-Hf-Cl * + HCl

H2O Half-Reaction:

A: ZrO2-O-Zr-Cl* + H2O = ZrO2-O-Zr-OH* + HCl

B: HfO2-O-Hf-Cl* + H2O = HfO2-O-Hf-OH* + HCl
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TS TS

H2O(g)

+
HCl(g)

+

MCl4(g)
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HCl(g)

M-O-M-Cl*

+

AB

M-OH*

•• Chemistry of  Chemistry of Zr Zr andand Hf  Hf is remarkably similar: Ligand exchange reactionsis remarkably similar: Ligand exchange reactions
•• Precursor desorption predicted for both cases - submonolayer cause? Precursor desorption predicted for both cases - submonolayer cause?
•• Reverse reaction and byproduct  Reverse reaction and byproduct readsorption readsorption predicted - Cl contamination?predicted - Cl contamination?
•• Relatively high temperatures are required (300-350 Relatively high temperatures are required (300-350°°C).C).

M-Cl*

Widjaja and Musgrave, JCP 117, 1931 (2002).

Trapped intermediates
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HfOHfO22 ALD on SiO ALD on SiO2 2 and HfOand HfO2 2 SubstratesSubstrates
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HfCl4 Half-Reaction:

A: SiO2-OH* + HfCl4 = SiO2-O-Hf-Cl* + HCl

B: HfO2-OH* + HfCl4 = HfO2-O-Hf-Cl * + HCl

H2O Half-Reaction:
A: SiO2-O-Hf-Cl* + H2O = SiO2-O-Hf-OH* + HCl

B: HfO2-O-Hf-Cl* + H2O = HfO2-O-Hf-OH* + HCl
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H2O(g)
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Hf-Cl*

+
HCl(g)

+HfCl4(g)
+

Si-OH*

HCl(g)
+

Si-O-Hf-Cl*

• • Substrate only affects kinetics of initial layer if full monolayer growth occurs.Substrate only affects kinetics of initial layer if full monolayer growth occurs.
•• Temperature determined by barrier relative to trapped intermediate. Temperature determined by barrier relative to trapped intermediate.
•• Same issues as with as-grown film. Same issues as with as-grown film.

A
B

Han, Gao, Garfunkle, Widjaja, Musgrave, Surf. Sci. (2003).
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ZrClZrCl44 ALD Reactions on Multiple OH Sites on SiO ALD Reactions on Multiple OH Sites on SiO22

+ H2O

+ H2O

Pathway to 
trapped OH?

First ligand exchange barrier is higher, but subsequentFirst ligand exchange barrier is higher, but subsequent

barrers barrers are similar. Reaction with multiple sites lowersare similar. Reaction with multiple sites lowers

growth rate (M. Green et al.)growth rate (M. Green et al.)
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Hydroxylation of Ge(100) with HHydroxylation of Ge(100) with H22OO

Ge9H12 cluster

H2O

H2O Ads

H-OH Dis

Ge-OH-H Dis

H-O-H Bridge

Ge

Si

Oxide species thermodynamically less stable on the Ge(100) surface

Mui and Musgrave, J. Phys. Chem. B, In press (2004).

Easier to stopEasier to stop

Ge at OH terminatedGe at OH terminated

state for ALDstate for ALD

Interlayer SiOInterlayer SiO2 2 forms duringforms during

ALD of oxides on SiALD of oxides on Si
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Surface Preparation of Ge:Surface Preparation of Ge: Nitridation  Nitridation with NHwith NH33
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Ge-NH2-H Dis

H-N-H Bridge

NH3

H2O

Nitrididation involves higher activation barriers.

-60
H-O-H Bridge

Mui and Musgrave, J. Phys. Chem. B, Submitted (2004).

Nitridation Nitridation must be done under non-equilibriummust be done under non-equilibrium

flow conditions because products are not mostflow conditions because products are not most

stable states in mechanism. stable states in mechanism. 
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Hydroxylation of Ge with HHydroxylation of Ge with H22OO22

Reactions of HOOH

• Two reaction pathways.

• “OH Dis” pathway generates surface

H, and has lower barrier

• “OH-OH Dis” pathway produces two

OH groups, which are more stable

thermodynamically.

• Also studied further oxidation to

bridge-bonded H-O-OH species.

Ge9H12 cluster

H2O2

H2O2 Ads

OH-OH Dis

H-OOH Dis

Reaction of HOOH
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Reaction of ZrClReaction of ZrCl44 on  on Hydroxylated Hydroxylated GeGe
ZrCl4

OH-OH Dis

ZrCl4-Ads-OH-OH-Bridge

ZrCl3-O-OH-Bridge

ZrCl2-O-O-Bridge

HCl

HCl

Reaction on double Si-OH sites

Reaction on single Si-OH sites
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HfOHfO22 ALD Reactions Using  ALD Reactions Using HfHf(NMe(NMe22))44

Hf(NMe2)4

Will ALD growth rate be slower with Will ALD growth rate be slower with HfHf(NMe(NMe22))44 because it is larger than HfCl because it is larger than HfCl44??

HfCl4

B Layer

A Layer

Functionalized SubstrateFunctionalized Substrate
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ThermochemistryThermochemistry: Relative Bond Strengths: Relative Bond Strengths

81.03103.51121.09Hf-X4

91.5295.04114.22H-X

N(CH3)2ClO 

Bond Energies (kcal/mol)

1. Hf-O bond formed and O-H bond broken in both
cases

2. Broken bond is stronger relative to formed bond
in Metal-chloride case

3. Formed bond is stronger relative to broken
bond in Metal-alkylamine case

Bond Energies (kcal/mol)Bond Energies (kcal/mol)

Planar N indicates Planar N indicates 

double bonds to double bonds to HfHf
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Half-reaction with Hf(X)4: Half-reaction with H2O:
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+
HNMe2(g)
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Hf(NMe2)4(g)

+

Hf-OH*

HNMe2(g)

+

HfCl4

• Hf(N(CH3)2)4 reaction is exothermic and does not exhibit trapping of intermediate state.

•  Hf(N(CH3)2)4 barrier is lower: lower ALD temperature.

•  Hf(N(CH3)2)4 shown to have higher growth rate than metal chloride process - less

precursor desorption and higher surface OH site concentration at reaction temperatures.

HfCl4

Hf(N(CH3)2)4

Hf(N(CH3)2)4

Han, Gordon, and Musgrave, Accepted (2004).

N dative bond N dative bond 
to surface to surface HfHf

HfHf-O--O-Hf Hf bridgebridge

is linear!is linear!
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11stst Half-reaction Non-Growth Ligand Exchange Half-reaction Non-Growth Ligand Exchange
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Reaction with Hf(X)4:

HfO2-OH* + Hf(N(CH3)2)4 = HfO2-O-Hf-N(CH3)2* + HN(CH3)2

-30
-25
-20
-15
-10
-5
0

TS

Hf-O-Hf-NMe2*

+

Hf(NMe2)4(g)

+

Hf-OH*

HNMe2(g)

Non-Growth Exchange

Growth

ALD Ligand-Exchange Reaction

Non-Growth Ligand ExchangeHfO2-OH* + Hf(N(CH3)2)4 = HfO2-N(CH3)2* + Hf(N(CH3)2)3OH

Hf-N(CH3)2*

Hf(N(CH3)2)3OH(g)

Non-growth Ligand ExchangeNon-growth Ligand Exchange

• • results in lower growth rateresults in lower growth rate

• • more competitive for MClmore competitive for MCl44

• • may result in particle formationmay result in particle formation



chasm@stanford.edu 25Stanford University Chemical Engineering and Materials Science and EngineeringStanford University Chemical Engineering and Materials Science and Engineering

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

1/T (K-1 10-3)

k
 (

s
-1

)

500°C 250°C 150°C350°C

HfCl4 ALD

Window

Hf(N(CH3)2)4 ALD

Window

Forward Reaction RatesForward Reaction Rates

? ?

a

E

n

RT

kTATe

?

? ??

A n Ea/R

HfCl 4 First Half-Reaction 2.81E+12 0.472 1.05E+04

HfCl 4 Second Half-Reaction 3.18E+11 0.450 9.05E+03

Hf(N(CH 3)2)4 First Half-Reaction 4.01E+12 0.017 5.68E+03

Hf(N(CH3)2)4 Second Half-Reaction 5.72E+11 0.222 1.68E+03

1/T (K-1 10-3)

HfClHfCl44 reactions significantly reactions significantly

Slower and require higher T. Slower and require higher T. 

Rate of HRate of H22O half-O half-rxn rxn too hightoo high
- rate limiting step is DMA- rate limiting step is DMA
desorption leading to longdesorption leading to long
purge times.purge times.
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HfClHfCl44 Forward and Reverse Reaction Competition Forward and Reverse Reaction Competition
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HfCl4 ALD

Window

A n Ea/R

HfCl 4 First Half-Reaction - Forward 2.81E+12 0.472 1.05E+04

HfCl 4 Second Half-Reaction - Forward 3.18E+11 0.450 9.05E+03

HfCl 4 First Half-Reaction - Reverse 1.51E+10 -0.321 2.34E+03

HfCl 4 Second Half-Reaction - Reverse 7.90E+11 0.197 2.69E+03

Etching reactions are
significant

1/T (K-1 10-3)
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Hf(N(CHHf(N(CH33))22))44 Forward and Reverse Reaction Competition Forward and Reverse Reaction Competition
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Etching reactions are
not significant

Hf(N(CH3)2)4

ALD Window

A n Ea/R
Hf(N(CH3)2)4 First Half-Reaction - Forward 4.01E+12 0.017 5.68E+03
Hf(N(CH3)2)4 Second Half-Reaction - Forward 5.72E+11 0.222 1.68E+03
Hf(N(CH3)2)4 First Half-Reaction - Reverse 2.01E+09 0.344 9.72E+03
Hf(N(CH3)2)4 Second Half-Reaction - Reverse 1.08E+12 0.341 1.28E+04

1/T (K-1 10-3)
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Alkoxides as Alternative ALD PrecursorAlkoxides as Alternative ALD Precursor

Metal Chlorides

• Commonly used

• Simple structure

• HCl by-product

• Precursor desorption

• High deposition temperatures

Metal Alkoxide

• Metal and oxygen precursor

• Organic by-product.

• Possibility of mixed thin films.

• Reactivity can be tuned.

HfCl4 Hf[OCH2CH3]4

Linear O indicates Linear O indicates 

double bonds to double bonds to HfHf
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ALD of HfOALD of HfO22 with Hf(OEt) with Hf(OEt)44 and H and H22OO

Metal Half-ReactionHf(OEt)4

Ads-Hf-OH-Hf(OEt)4

Hf-OH*

Hf-O-Hf(OEt)3*

EtOH
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Hf-OEt*

H2O

Ads-Hf-OEt-H2O

Des-Hf-OH-EtOH
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Hf-OH*

EtOH

Ethanol byproduct dative 
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RXN is endothermic
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Metal Half-Reaction

Hf-OEt*

HfCl4

Ads-Hf-OEt-HfCl4

TS-Hf-Cl-EtCl

Hf-O-HfCl3*

EtCl

High activation barrier!
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ALD with HfClALD with HfCl44 and Hf(OEt) and Hf(OEt)4 4 as Oxygen Sourceas Oxygen Source

Oxygen Half-Reaction

Hf-Cl*

Hf(OEt)4

Ads-Hf-Cl-Hf(OEt)4

TS-Hf-OEt-EtCl

Hf-O-(OEt)3*

EtCl

High activation barrier!
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Alternative MechanismAlternative Mechanism

Metal Half-Reaction

Hf-OEt*

HfCl4

Ads-Hf-OEt-HfCl4

TS-Hf-OEt-C2H4-HCl

Hf-O-HfCl3*

Des-Hf-Cl-HCl

HCl

Two gas phase products:

• Favorable entropy at high T

• High barrier, endothermic
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Oxygen Half-Reaction

Hf-Cl*

Hf(OEt)4

Ads-Hf-Cl-Hf(OEt)4

Hf-O-(OEt)3*

Des-Hf-OEt-HCl

HCl

Two gas phase products

• Favorable entropy at high T

• High barrier and endothermic

TS-Hf-Cl-C2H4-HCl



Stanford UniversityStanford University  Chemical Engineering and Materials Science and Engineering chasm@stanford.edu 35

C2H4

-50

-40

-30

-20

-10

0

10

20

30

40

En
er

gy
 (k

ca
l/m

ol
)

Incomplete Cl EliminationIncomplete Cl Elimination

Hf-Cl*

Hf(OEt)4
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Metal OxideMetal Oxide ALD Precursor SelectionALD Precursor Selection

Metal chlorides:
• Require high temperatures
• Almost thermalneutral
• Lead to trapped intermediates
• Readsorption of HCl-etching and corrosion
• Cl contamination
• Competitive non-growth ligand exchange
reactions

Alkylamides:
• Require lower temperatures
• Less strongly trapped intermediates
• Thermodynamic driving force
• Less competition with non-growth ligand
exchange reactions

Alkoxides:
• Require higher temperatures
• Two strongly trapped intermediates and
strongly bound by-products
• Little thermodynamic driving force
• Various competitive reactions
• Very expensive oxygen source
• Various contamination pathways
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ALD on OrganicsALD on Organics

AS-ALD MotivationAS-ALD Motivation
• Etching of HfO2 and ZrO2 is difficult.
• High-K etch may require specialized masks.

Area Selective ALDArea Selective ALD

• AS-ALD requires patterning the surface
with an agent which inhibits ALD.
• Masking agent must not thermally
decompose at ALD temperature.
• Masking agent must lead to highly selective
ALD growth.
• ALD precursors should be chosen which
react at low temperatures.
• ALD precursors must have fast kinetics and
high growth rates to reduce the number of ALD
cycles the masking agent must be exposed to.

PURGEPURGEPURGEPURGEPURGEPURGEPURGEPURGE

A PULSEA PULSE A PULSEA PULSE A PULSEA PULSE

B PULSEB PULSEB PULSEB PULSE

B Layer

A Layer

Functionalized SubstrateFunctionalized Substrate

BlockingBlocking
AgentAgent

With Bent, and McIntyreWith Bent, and McIntyre

ALD for Contact to MolecularALD for Contact to Molecular
DevicesDevices

• Choose molecular functionalization to initiate ALD
• Gentle metallization
• Controlled contact formation
• Molecule left intact.
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Reaction between TMA and Reaction between TMA and SAMsSAMs

TMA

Complex

Product

-OH SAM
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Reaction Barrier for TMA on Reaction Barrier for TMA on SAMsSAMs

Xu and Musgrave, In press, Chem. Mat. (2004).
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complex
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TMA
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Alkylamide Alkylamide ALD on Amine Terminated SAM?ALD on Amine Terminated SAM?

• Alkylamide precursor should
allow even lower growth T.

• Other metal reactions for forming
contacts to molecular electronic
devices?

• ALD on NH terminated surfaces?
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Hf Hf Nitride or Oxynitride ALD?Nitride or Oxynitride ALD?
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ConclusionsConclusions

• Details of high-K ALD mechanisms predicted  including kinetics

• ALD temperature is determined by barrier relative to trapped intermediate or 

desorption of byproducts (for alkoxides)

• Submonolayer growth due to a combination of sterics, desorption of precursor 
and limited surface reactive sites.

• Precursors should have exothermic reactions for ALD reactions: Chlorides a 

poor choice

• Alkylamides are most promising high-K ALD precursors: low T, low contamination,

best choice for area-selective ALD

• Substrates only affect initial ALD reaction

• Other substrates (Ge, nitrides, organics) work for these ALD chemistries if 

they are OH functionalized or NH functionalized (for alkylamide precursor)
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