Microfabricated Biochemical Analysis: Bulk Properties to Single Molecules

Students: Sundaresh N. Brahmasandra,* Kalyan Handique,* Madhavi Krishnan,* Rongsheng Lin,* Vijay Namasivayam,* Sethu Palaniappan,** Rohit Pal,* Nimisha Srivastava,* Ming Yang,* Moon-Bin Yim* Post Doc: Victor Ugaz

Staff: Ken Alfano,* Kenneth Comistek,* Dylan Heldsinger,* Brian N. Johnson,* Zafar Razzacki* Faculty: Mark A. Burns,†* David T. Burke,*** Ron Larson,* and Carlos H. Mastrangelo**

†Department of Biomedical Engineering
*Department of Chemical Engineering
**Department of Electrical Engineering
***Department of Human Genetics

University of Michigan Ann Arbor, MI

Support: NIH (NHGRI, NIAID, NIDCR) Becton Dickinson

Brief History of the Personal Computer

- **1972**The first digital personal microcomputer:
MITS 816 (no display or keyboard)
- 1976Apple II
(Cray I Supercomputer)
- **1981** IBM PC, DOS

2002 Mac G4 Dual Processor (15 Gigaflops)

Ref: Virtual Computer History Museum (http://virtualmuseum.dlib.vt.edu/index.html)

Brief History of the Genome Project

- **1953** Watson and Crick publish structure of DNA
- **1990** NIH/DOE present 5-year plan to Congress
- 1998Celara Genomics formed
(Integrated DNA analyzer)
- **2000** Draft of human genome
- 2003 Sequencing centers (G5): DOE JGI, Baylor College, Sanger Centre, Washington U., Whitehead Institure/MIT

Ref: NIH (NHGRI) (http://www.ornl.gov/hgmis/project/timeline.html)

Impact of Genetic Testing

		approx.	Tests
Application	units of observation	calculation	yr.
Medicine:			
Pathogen testing of clinical samples	pathogens X patients	10 ³ x 10 ⁶	10 ⁹
Genetic testing (simple, single gene traits)	genes X patients	10 ² x 10 ⁶	108
Genetic testing (complex, multi- gene traits)	genes X variants X patients	10 ³ x 10 ³ x 10 ⁸	1014
<u>Agriculture:</u> Plant and animal breeding	genes X species X individuals	10 ³ x 10 ² x 10 ⁸	1013
Pathogen testing of field samples	pathogens X species X individuals	10 ³ x 10 ² x 10 ⁸	1013
Biotechnology:			
Bacterial testing of food products	pathogens X batch	10 ² x 10 ⁷	10 ⁹
Police forensics	samples X identity loci	10 ⁷ x 10 ²	10 ⁹
Environmental and ecological testing	samples X identity loci	10 ⁸ x 10 ²	1010
			5
		TOTAL =	>1014

Microfabricated Biochemical Analysis

- Integrated Device
- Phase-Change Valve
- Viscometer
- Single Molecule

Microfabricated DNA Analysis: Fluidics, Reactions, and Separations

Si/Glass Device

- Individual Drops (~100 nl)
- Integrated Heating (± 0.1 C)
- Crosslinked Gel (PAGE)
- Integrated Detection $(1 \text{ ng}/\mu l)$

Device Construction

Glass Substrate

Silicon Substrate

Device Construction

Heater/Sensor Substrate

Glass Substrate

240 nl Reaction Volume

Air Vent

Gel Electrophoresis: Loading

Sample in intersection

10 s compaction Remove excess

Gel Electrophoresis: Separation

Integrated Run

Two Reactions in Series + Separation

Reaction system

Separation Result

19

Multiple Reaction Chambers (4 reactions w/ valves, 1 separation)

Multiplexed Genotyping (PCR/PCR/ExoSAP/Lig (LDR)-Single tube reaction)

10-plex SNP LDR genotyping + 2 positive control peaks.

300 individuals typed in <3 days.

5 individuals shown on ALF

Components for AnalysisFluidic:Reaction:

- Fluidic manifold
- Phase-change (wax) valves
- Expansion chamber pumps
- Splitting/mixing
- Viscometer

Separation:

- Short cross-linked gels
- Linear gels
- Replaceable polymers
- Native/denaturing

• PCR amplification/ quantification

- Ligation
- Roll cell convection
- Sanger seq. reactions

<u>Other:</u>

- Bonding/packaging
- Liquid detection
- Reagent storage
- Single molecules ²²

Microfabricated Biochemical Analysis

- Integrated Device
- Phase-Change Valve
- Viscometer
- Single Molecule

Ideal Sealing Valve

Requirements

- Biocompatible
- Simple actuation
- No new fabrication steps
- Individually addressable
- Latched Valve
- Seals both gas and liquid (T up to 95 C)

Concept

Phase Change Material

Transition

Controlled motion

Temperature gradients

- Temporal/spatial gradient
- Front solidification controllable
- Arrays of valves possible

Operation

Loading

Operation

Loading

Operation

Loading

Loading wax

Operation

Closing

Operation

Closing

Operation

Problem Description

Objectives

35

Operation

Opening

Phase-Change Valve

Operation

Opening

Phase-Change Valve

Operation

Opening

Valve Reproducibility

Cycling

Valve Closing

Pressure Test

Biochemical Reaction

Device

Biochemical Reaction

Cycles

49

Integrated Device

Result

Time

50

Microfabricated Biochemical Analysis

- Integrated Device
- Phase-Change Valve
- Viscometer
- Single Molecule

Micro-scale Viscosity Measurement

- Viscosity of input sample important
- Body Fluids' viscosity diagnostic tool
- Low volume of sample
- Macroscale viscometers hard to use

Viscosity in Medicine

Predictor/ **Risk factor** (*Preventive*) Blood and Blood Plasma -Cardiovascular Risk factor, Ischemia, Type II Diabetes Synovial Fluid -**Osteoarthritis Severity** Mucin Asthma

Spittle

Indicator/ Marker (*Diagnostic*)

<u>Blood Plasma</u>
 Hyperviscosity Syndrome (growth of Tumour etc.)
 Coronary Heart Disease,
 Diabetic Retinopathy
 Rejection in Organ
 Transplantation

 <u>Amniotic Fluid</u> - Fetal Lung Maturity

Seminal Fluid - Sperm Motivity

Motivation

Current Instrumentation

o Rotational Viscometers o Capillary viscometer

Limitations

✓ Allows only serial testing
✓ Expensive, elaborate set-up, not portable
✓ Not available for Personal Healthcare

Microfluidic Viscometer

Capillary Pressure Driven Flow

$$v = \frac{d^2}{S\mu} \frac{\Delta P}{L}$$

Laminar Flow

$$\mu = \frac{d^2}{S} \cdot \Delta P \cdot \frac{1}{vL}$$

$$\Delta P = 2\sigma \cos\theta(\frac{1}{d} + \frac{1}{w})$$

56

Data Analysis: vL

$$\mu = \frac{d^2}{S} \cdot \Delta P \cdot \frac{1}{vL}$$

Viscosity of Water

Advantages

- Quick and Easy
- Cheap therefore disposable
- Portable
- Multiple Channels allow parallel processing

Limitations

- Need to know the geometry (d and S) accurately
- Capillary Pressure has to be calculated
- Low Precision

Microfluidic Measurement of ΔP (Capillary Pressure)

$$P_{atm}V_1 = (P_{atm} + \Delta P)V_2$$
$$\Delta P = P_{atm}(\frac{V_1}{V_2} - 1)$$

$$\Delta P = 2\sigma \cos\theta(\frac{1}{d} + \frac{1}{w})$$

$$\mu = \frac{d^2}{S} \cdot \Delta P \cdot \frac{1}{vL}$$

59

Self-Calibrating Nanoliter Viscometer **Blood Plasma Viscosity**

60

Microfabricated Biochemical Analysis

- Integrated Device
- Phase-Change Valve
- Viscometer
- Single Molecule

Advanced Component Development: Single Molecule Manipulations

Single Molecule Analysis

DNA Stretching

Hydrodynamic forces

Electrostatic forces

Chu, Larson et. al. (1995)

Washizu et. al. (1995)

DNA Electrostretching

Lambda DNA Stretched in Tris Hcl

Relaxed DNA Molecules

DNA partly stretched under AC field (10⁶ V/m, 1MHz)

Electrostretching

Medium

DNA Stretching vs Polymer concentration

<u>Conditions</u>

- Lambda DNA
- Gold Electrodes

• Tris HCl with varying LPA

• AC field (3x10⁵ V/m,1MHz)

C* : Critical entanglement concentration

5 C* : Polymer well entangled; Tube diameter close to DNA size

67

Mechanism of DNA Stretching: AC fields

- Linear Polyacryamide confines DNA molecules within tubes
- At 5 C*, Tube diameter approaches DNA diameter
- AC field helps in Dielectrophoretic stretching

DNA Immobilization and Optimization

Lambda DNA Stretched in Linear Polyacrylamide

DNA Immobilization Thiol-On -Gold

Single Molecule Manipulations

Electric field on — DNA molecule stretches...

Single Molecule Manipulations

...and moves towards pointed electrode.
Single Molecule Manipulations

Field (frequency) increases — DNA stretches between electrodes

Reactions

Microscale

Stretch

then cut

Localized Reactions

UV Activation

Localized restriction digestion reaction of stretched DNA

UV induced reactions

Microscale

Zone 1 illumination

Conclusions

- Microfabricated components for chemical analysis
- Integrated chemical analysis system
- Potential for inexpensive, selfcontained, complex systems
- Many future applications