Chemical Vapor Deposition of Organosilicon Composite
 Films for Porous Low-k
 Dielectrics

> April D. Ross, Karen K. Gleason Department of Chemical Engineering Massachusetts Institute of Technology

> ERC Teleconference · September 2, 2004

••• Goals

- Create a Porous, Low- κ Film by CVD
 - Rigid Organosilicon Matrix
 - Thermally Labile
 Porogen
 - Deposition by Pulsed
 Plasma Enhanced CVD

	Composition SiO ₂ Si:O:C:H (Organosilicate Glass – OSG)	Fully den: 4.0 2.7–3.0	se κ Air $\kappa = 1.0$		
<u>% Porosity</u> <u>κ</u>					
		0	2.7		
		20	2.3		
		50	1.75		
		90	1.15		

Technology Requirements - к

Interconnect Technology Requirements - Near Term

Year of Production	2001	2002	2003	2004	2005	2006	2007
Interlevel metal insulator effective k-value	3.0-3.6	3.0-3.6	3.0-3.6	2.6-3.1	2.6-3.1	2.6-3.1	2.3-2.7
Interlevel metal insulator bulk k-value	<2.7	<2.7	<2.7	<2.4	<2.4	<2.4	<2.1

Interconnect Technology Requirements - Long Term

Year of Production	2010	2013	2016
Interlevel metal insulator effective k-value	2.1	1.9	1.8
Interlevel metal insulator bulk k-value	<1.9	<1.7	<1.6

Source: ITRS Roadmap for Semiconductors: 2001 Update - Interconnect - http://public.itrs.net

••• Industry Outlook

• The widely used ILD material for $0.13\mu m$ and older technologies are PECVD SiO₂ and SiOF

Materials/ Technology	0.13μm or 0.09μm	0.07µm	0.05µm	
Organic	SiLκ [™] , Flare [™] , Paralyne-F(N), αFC, PAE,etc.	Porous SiLĸ [™] , Porous Flare [™] , OXD, etc	Partial Air Gap, Complete Air Gap	
Organosilicates	Carbon Doped Oxide, SOG, etc	Porous CVD CDO, Porous SOD, CDO, etc.	Partial Air Gap, Complete Air Gap	
Range of ĸ	2.8 to 3.0	1.9 to 2.6	1.0 T to 1.5	

Dr. Eb Andideh, Intel Corporation (2003, MIT hosted ERC teleconference)

Solventless Low-κ Dielectrics

 Manufacturing Metrics: Lowering the dielectric constant of current ILDs leads to fewest levels of interconnect → economic and environmental "win-win"

CVD

- Thin, Conformal Coatings
- Solventless
- Ease of Integration
- Mechanical Properties
- Unclear Strategy for porous materials

Spin-On

 Extendibility to Future Generations by adding pores

Goolo/	Usa	Jsage Reduction		Emission Reduction			
Possibilities	Energy	Water	Chemicals	PFCx	VOCs	HAPs	Hazardous Wastes
Pulsed Plasma Enhanced CVD for k < 2.2	Data not available	NA	Order of magnitude greater consumption for spin-on (Hendricks)	Higher emissions for CVD due to chamber cleans	Great reduction vs Spin- on	Some reduction in acid vapors	Spin-on requires solids waste disposal

OSG Mechanical Properties CH₃ CH₃ O - Si - CH3-0-Si--0-SICH₃ CH₃ CH₂

'M' Group Chain Terminating

'D' Group Chain Propagating

'T' Group Chain Crosslinking

Condensation Reactions

Monitoring Condensation

••• OSG Mechanical Properties

OSG Mechanical Properties

Increasing the H_2O_2 flowrate

- Amount of 'T' groups relative to 'D' groups increases
- Both Modulus and Hardness increase
- Annealing increases percentage of T groups and Modulus

••• Composite Materials

Polystyrene Beads

- Bead Diameters: 15nm (std = 3), 96nm (std = 9)
- Health=0, Flammability=1, Reactivity=0
- 1% Styrene in Air: Health=1, Flammability=0, Reactivity=1

Cyclodextrin

• 1.54nm diameter

Spin On: Jin-Heong Yim, et al. 2003

Polystyrene Beads

Reactor Configuration

Reactor Configuration

Ultrasonic Atomization

- Uses low ultrasonic vibrational energy for atomization
- Dispenses microliters/min
- Pressureless atomization
 - Can handle up to 30% solids

Atomized Delivery of Water and Porogen

••• Porogen Detection

- Dextran
 - Molecular Weight: 3000 g/mol ^H

НÒ

 \cap

ĠН

Texas Red[®] labeling

Dextran & OSG FTIR Analysis

Conclusions for Porogens

- Porogen Delivery
 - Ultrasonic atomization used to deposit porogen under vacuum conditions
 - Dextran co-deposited with OSG matrix
 - Removal of dextran through annealing
- Pulsed Plasma Enhanced CVD process for depositing OSG films
 - OSG thin films were deposited using D₄
 - H_2O_2 used as oxidant to promote –OH bonding
 - Condensation reaction improves hardness
 - Film properties linked to structure through FTIR

Either increasing fragile porous low k materials must be integrated

or

A robust sacrificial layer must be integrated which can form air in the final step (sacrificial layer = 100% porogen)

> • Havemann and Jeng (TI), US Patent 5461003, 1995.

• Anand et al., IEEE, 1997.

Gleason Group Research by Tom Casserly and Kelvin Chan

••• Extreme Properties

- Air has the lowest possible dielectric constant of 1.0
 - reduced RC delay
 - lower power consumption
 - lower cross-talk noise
- Air has the lowest possible refractive index of 1.0
 - high index contrast in optical devices
 - (e.g. thin-film optical filters)

Future Microprocessor Interconnect Technology Requirements*

*Source: International Technology Roadmap for Semiconductors 2001

Sacrificial Layers in Air Gap Formation

- Rate of Decomposition
- Pressure in Air Gap Cavity
- Diffusivity of Decomposition Products in Overlying Dielectric

Temperature

Closed Cavity Air Gap

••• Single-Level Structure

••• Acknowledgments

- NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
- MIT MRSEC Shared Facilities supported by the NSF
- Semiconductor Research Corporation/Texas Instruments
- Gleason Research Group
- Dr. Qingguo Wu, Novellus