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Technology Requirements - κ

Interconnect Technology Requirements - Near Term
Year of Production 2001 2002 2003 2004 2005 2006 2007

Interlevel metal insulator
effective k-value 3.0-3.6 3.0-3.6 3.0-3.6 2.6-3.1 2.6-3.1 2.6-3.1 2.3-2.7

Interlevel metal insulator
bulk k-value <2.7 <2.7 <2.7 <2.4 <2.4 <2.4 <2.1

Interconnect Technology Requirements - Long Term

Year of Production 2010 2013 2016

Interlevel metal insulator
effective k-value 2.1 1.9 1.8

Interlevel metal insulator
bulk k-value <1.9 <1.7 <1.6

Source: ITRS Roadmap for Semiconductors: 2001 Update - Interconnect - http://public.itrs.net



Industry Outlook
The widely used ILD material for 0.13µm and 
older technologies are PECVD SiO2 and SiOF
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Dr. Eb Andideh, Intel Corporation (2003, MIT hosted ERC teleconference)



Solventless Low-κ Dielectrics
Manufacturing Metrics:  Lowering the dielectric constant of current 
ILDs leads to fewest levels of interconnect → economic and 
environmental “win-win”

Thin, Conformal Coatings
Solventless
Ease of Integration
Mechanical Properties
Unclear Strategy for porous 
materials
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Composite Materials
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Polystyrene BeadsPolystyrene BeadsPolystyrene Beads
CyclodextrinCyclodextrinCyclodextrin

OctamethylOctamethylOctamethyl---
cyclotetrasiloxanecyclotetrasiloxanecyclotetrasiloxane

Primary Concern: 
Mechanical Integrity

Mechanical strength is reduced 
with porosity, p, by (1-p)3



OSG Mechanical Properties
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Condensation Reactions

How can we make ‘T’ groups?
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Monitoring Condensation

-OH Bonding

Si-C Bonding

Si-O-Si Bonding
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OSG Precursor: D4

Oxidant: H2O2/H20
Flowrate: 1 sccm

Flowrate: 20 sccm
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Quantifying Condensation
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OSG Mechanical Properties
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OSG Mechanical Properties
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Amount of ‘T’ groups relative to ‘D’ groups increases
Both Modulus and Hardness increase
Annealing increases percentage of T groups and Modulus

Increasing the H2O2 flowrate ….



Composite Materials

Polystyrene Beads
Bead Diameters: 15nm (std = 3),  96nm (std = 9)
Health=0, Flammability=1, Reactivity=0
1% Styrene in Air: Health=1, Flammability=0, Reactivity=1

CTD, Inc

Cyclodextrin
• 1.54nm diameter

100nm

Spin On:  Jin-Heong Yim, et al. 2003



Composite Materials
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Reactor Configuration

Precursors In
Typical Operating Parameters

• pressure  300 mTorr
• peak power 100-300 W
• duty cycle 10-25%
• substrate temp cooling water
• precursor flow rate 0 - 20 sccm

Typical Operating Parameters
• pressure  300 mTorr
• peak power 100-300 W
• duty cycle 10-25%
• substrate temp cooling water
• precursor flow rate 0 - 20 sccm

13.56 MHz
RF excitation Thin Film

on silicon substrate

Vacuum
Out



Reactor Configuration

Precursors In

Cyclodextrin
Solution

Thin Film
on silicon substrate

13.56 MHz
RF excitation

Ultrasonic Atomizer Ultrasonic Atomization
Uses low ultrasonic 
vibrational energy for 
atomization
Dispenses microliters/min
Pressureless atomization
Can handle up to 30% 
solids

Vacuum
Out



5001000150020002500300035004000
Wavenumber (cm-1)

Atomized Delivery of Water and Porogen

Deposited with 0.2 ml/min of 
water atomization
Deposition Rate:

up to 4.0 µm/min

OSG

5001000150020002500300035004000
Wavenumber (cm-1)

Cyclodextrin
Deposited using ultrasonic 
atomization under vacuum 
conditions



Porogen Detection

Dextran
Molecular Weight:  3000 g/mol
Texas Red® labeling

1 µm



Dextran & OSG FTIR Analysis
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Conclusions for Porogens

Porogen Delivery
Ultrasonic atomization used to deposit porogen under vacuum 
conditions

Dextran co-deposited with OSG matrix

Removal of dextran through annealing

Pulsed Plasma Enhanced CVD process for depositing 
OSG films

OSG thin films were deposited using D4

H2O2 used as oxidant to promote –OH bonding

Condensation reaction improves hardness

Film properties linked to structure through FTIR



Air Gaps

Either increasing fragile porous low k 
materials must be integrated

or

A robust sacrificial layer must be 
integrated which can form air in

the final step
(sacrificial layer = 100% porogen)

• Havemann and Jeng (TI), 
US Patent 5461003, 1995.

• Anand et al., IEEE, 1997.

Gleason Group Research by Tom Casserly and Kelvin Chan



Extreme Properties
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Future Microprocessor Interconnect 
Technology Requirements*

Year

κ

Air has the lowest possible 
dielectric constant of 1.0

reduced RC delay
lower power consumption
lower cross-talk noise

Air has the lowest possible 
refractive index of 1.0

high index contrast in optical 
devices 
(e.g. thin-film optical filters)

*Source: International Technology Roadmap for Semiconductors 2001



Sacrificial Layers in Air Gap Formation

TemperatureTemperature

Rate of Decomposition
Pressure in Air Gap Cavity
Diffusivity of Decomposition Products 
in Overlying Dielectric
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Single-Level Structure
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