Biological Removal of Copper & Organic Contaminants from Chemical-Mechanical Planarization (CMP) Effluents

Dr. Reyes Sierra

Chemical and Environmental Engineering, University of Arizona

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Thrust C: Factory Integration

Task C-1: Novel Processes for Water Purification and Wastewater Treatment

Subtask C-1-2:

Bio-treatment of Waste Streams Containing Organic Compounds and Copper

Cu interconnect technology is rapidly replacing traditional processes for the metallization of semiconductor devices

<u>Cu-Chemical Mechanical Planarization</u> (<u>CMP</u>) effluents ~ 30-40% water consumed in a fab

Cu-CMP effluents contain significant quantities of soluble <u>copper</u> and <u>organic contaminants</u>

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

CMP Wastewater Components

<u>Inorganic</u>

Copper: Inorganic solids: Oxidizers, strong acids/bases: Soluble Cu⁺² (1-50 mg/l) Abrasives (eg. SiO₂, Al₂O₃, CeO₂) H_2O_2 , NO₃⁻, KMnO₄, HF, NH₃, OH⁻, etc

<u>Organic</u>

Metal chelators / acids: Corrosion inhibitors: Surfactants/dispersants: Citric acid, oxalic acid, EDTA, peroxy acetic, etc. Benzotriazoles PFOS, alkyl sulfates, etc.

Source: Golden et al. 2000. Semiconductor Int. 23: 85-98.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Why Treat CMP Effluents?

To meet environmental standards; eg:

Cu limit : - discharge to POTWs: 1- 2 mg Cu/l - direct discharge: 5-10 µg Cu/l

Enable water reuse

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Treatment of CMP Effluents: Physico-Chemical Methods

(Removal of solids, metals, fluoride, soluble silica)

Requires large tanks, high chemical addition Generates (toxic) sludges High residual Cu and suspended solids content

UF / oxidant removal/ lon exchange (Removal of solids, oxidants, copper)

Expensive; No removal of organic fraction

Bioremediation of Heavy Metals

Environmental biotechnologies offer interesting potentials for metal removal and recovery (Zn⁺², Pb⁺²; Se(V); U(VI), etc.)

Biological treatment could also provide an attractive approach to effectively meet regulatory challenges associated with Cu-CMP.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Anaerobic Biotechnology

Expanded Granular Sludge Bed (EGSB) reactors

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

High-Rate Bioreactors

Biological Wastewater Treatment System at Philips,

(Stadskanaal, The Netherlands) for the removal of heavy metals (Ni, Pb, Cr, Al, Fe), nitrate and acetate.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Removal of Metal by Sulfate Reducing Bacteria (SRB)

$$SO_4^{2-} + 4 H_2 + H^+ \longrightarrow HS^- + 4 H_2O$$
(Electron donor)
$$S = + M^{2+} \longrightarrow MS \downarrow$$
Metal Sulfide

Metal Sulfides: very low solubility products (K_{sp}) eg. 10⁻⁴⁹ for CuS

Biologically Formed ZnS in a Sulfate Reducing Biofilm

Labrenz et al. 2000 Sience 290:5497

Treatment of Heavy-Metal Containing Wastewaters in Single-phase Anaerobic Sulfidogenic Bioreactors

Advantages

- Very low effluent Cu concentrations
- Simultaneous removal of organics
- Low maintenance & operational costs (low energy input / chemical requirements)
 - Rapid application at the industrial scale due to widespread full-scale experience with core technology

Drawbacks

- Possible microbial inhibition by heavy metals
- Contamination of biosolids with heavy metals
- Selective recovery of Cu not feasible

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Anaerobic Sulfate Reducing Bioreactor –

Crystallization Reactor (ASBR-CR)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Research Objectives

Investigate the feasibility of a novel treatment system consisting of an **anaerobic sulfate-reducing bioreactor – crystallization reactor** for the simultaneous removal of copper and organic contaminants in CMP effluents.

Susceptibility of CMP wastewater components to anaerobic biodegradation

Inhibitory effects of CMP wastewater components to anaerobic microorganisms

Evaluate the treatment of CMP effluent containing varying Cu levels in the two-reactor system

Results - Microbial Inhibition

		IC ₅₀
Compound	Structure	(mg/l)
Copper (II)	Cu	20.6 mg/l
Benzotriazole [BTA]		NT (<310 mg/l)
Poly(ethylene glycol) [PEG]	$H - (O CH_2 CH_2 -)_n OH$	NT (<349 mg/l)
PEG monooleate [PEG-mono]	$\begin{array}{c} H \\ c = c \\ H_{2} \\ c + c \\ c \\$	NT (<1000 mg/l)
Perfluoro-1-octanesulfonic acid tetraethylammonium salt [PFOS]	$\begin{array}{c} CF_3(CF_2)_6CF_2-\overset{O}{\underset{S}{\overset{I}}{\overset{I}{\overset{I}{\overset{I}}{\overset{I}{\overset{I}{\overset{I}}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}}{\overset{I}}{\overset{I}{\overset{I}}}}}}}}}$	NT (<612 mg/l)
Citric Acid	СООН СООН СООН H2CСH2 ОН	NT (<1237 mg/l)

NT - Non-toxic at concentrations less than the maximum tested concentration, as indicated

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Anaerobic Biodegradability

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Anaerobic Biodegradability

	Biodegradability		
Compound	Methanogens	SRB	
Polyethylene glycol	Yes	Yes	
Polyethylene glycol monooleate	Yes	Yes	
Isopropyl alcohol	Yes	Yes	
Citric Acid	Yes	Yes	
Oxalic acid	Partial	Yes	
Triton X-100	No	Yes	
Fluorinated Surfactant (PFOS)	No	No	
Benzotriazole	No	No	
Hydro-benzotriazole	No	No	

SRB - Sulfate Reducing Bacteria

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Anaerobic Sulfate-Reducing Bioreactor – Crystallization Reactor System

Schematic representation of the anaerobic bioreactor - crystallization reactor system

- 1 Influent
- 2 Crystallization reactor (CR)
- 3 Effluent CR
- 4 Mesophilic bioreactor (MR)
- 5 Gas cap
- 6 Biogas
- 7 Safety flask
- 8 Sodium hydroxide
- 9 Gasmeter
- 10 Liquid effluent recirculation
- 11 Liquid effluent

Τ=	30°C
HRT =	8 h
Recycle ratio =	15
Influent COD =	3 g/l
COD/sulfate =	0.55
Cu conc. =	0-65 mg/l

Anaerobic Sulfate-reducing Bioreactor

Electron scanning micrograph of microorganisms in the anaerobic biofilms

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Experimental periods

Period	Cu(II) (mg/l)	Organic matter (g COD/I)		
l l	0	3	(ethanol)	
ll II	0	3	(simulated	I CMP waste)*
III	5	3	"	£ 6
IV	25	3	"	66
V	65	3	"	"

* Simulated CMP waste:

Citric acid / poly(ethylene glycol) (PEG Mn=400) /isopropanol (IPA) (1 g COD/L each)

Organic Removal

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Cu Concentrations in the Effluent of the Two-reactor System and the Effluent of the Crystallization Reactor

Detail of the crystallization reactor during the first day (*left*) and after 5 days of operation (*right*) with an influent containing 5 mg Cu/l.

SEM Images of Crystallization Sand

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

SEM-EDS Analysis of Sand

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

System Performance: Removal of Organic Contaminants

Influent	COD removal (%)	
Ethanol	94.7 +/- 3.0	
Simulated CMP	66.8 +/- 9.8	
Simulated CMP + 5 mg Cu/l	65.7 +/- 8.1	
Simulated CMP + 25 mg Cu/l	60.4 +/- 7.4	
Simulated CMP + 75 mg Cu/l	66.6 +/- 7.5	

Organic loading rate: 9.1-10.6 g COD/I/day

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

System Performance:

Copper Removal

Period	Cu ²⁺ -in (µg/l)	Cu ²⁺ -out (µg/l)	Cu removal (%)	Cu Removal (%) CR only
III	5,000	16 (+/- 19)	99.4 (+/-1.3)	99.3 (+/-0.6)
IV	25,000	162 (+/-84)	99.3 (+/-0.5)	99.3 (+/- 0.2)
V	65,000	104 (+/- 45)	99.9 (+/-0.2)	99.8 (+/- 0.1)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Conclusions

Results from batch bioassays indicated that <u>typical components in</u> <u>CMP effluents were amenable to anaerobic treatment</u>

The proposed system was shown to be <u>highly effective to remove Cu</u> from a simulated CMP wastewater.

Very high Cu removal efficiencies (99.4-99.9% soluble Cu) were obtained for wastewaters containing 5-65 mg Cu/L.

Elimination of total copper ranged 88.6-97.3%.

<u>Cu removal occurred chiefly in the crystallization reactor</u> as a result of copper sulfide precipitation onto the sand surface

Low removal efficiencies of IPA and acetone resulted in incomplete COD removal

Future Research

Optimize the removal of Cu and organic contaminants

Determine the maximum Cu loading capacity of CR packing material

Develop a model for the CR to assist with predicting and improving Cu removal rates and efficiencies

Evaluate methods for metal recovery from the sand particles and evaluate potential for bed regeneration

Evaluate performance of the bioreactor - CR system treating actual CMP wastewater

Acknowledgements

Jeremy Hollingsworth

Mike Zhou Matt Yocum Matt Wilkinson

Mike Kopplin

Dr. Jim A. Field Dr. Kimberly Ogden Dr. Farhang Shadman

NSF Advance grant (BES 0137368)

NSF/SRC Center for Environmentally Benign Semiconductor Manufacturing

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing