Engineering of Interfacial Layer between high-k (ZrO₂, HfO₂) and Semiconductor (Si, Ge)

<u>Kang-ill Seo</u> and Paul. C. McIntyre Department of Materials Sci. & Eng., Stanford Univ.

Krishna. C. Saraswat Department of Electrical Eng., Stanford Univ.

Dong-Ick Lee, Shiyu Sun and Piero Pianetta SSRL (Stanford Synchrotron Radiation Laboratory), Stanford Univ.

Outline

\rm Motivation

- Scaling limit of MOS Gate Dielectric
- Interface Issues in high-k/semiconductor (Si, Ge)
- Interfacial layer Engineering of high-k (ZrO₂)
 / Si(001) by Solid State Reaction
 - XPS, TEM, Electrical Results
- Chemical structures and Band alignment at HfO₂ / Ge(001) interface
 - SR-PES, Electrical Results

Scaling of Si-MOSFETs

- Why we scale MOSFET ?
- Increase Packing Density
 → Cost Down
- Improve Performance (Speed ~ 1/L, 1/t_{ox})

• Gate Oxide Scaling

Timp, et al, Tech. Dig. Int. Elec. Dev. Meet., 1999

Year	Gate Length (nm)	EOT (nm)
1999	140	1.9-2.5
2000	120	1.2-2.5
2001	100	1.5-1.9
2002	85	1.5-1.9
2003	80	1.5-1.9
2004	70	1.2-1.5
2005	65	1.0-1.5
2008	45	0.8-1.2
2011	32	0.6-0.8
2014	22	0.5-0.6

How far we can push the gate oxide scaling ?

Problems in Scaling of Gate Oxide

- •Below 20 Å problems with SiO₂
- Gate leakage => circuit instability, power dissipation
- Degradation and breakdown
- Dopant penetration through gate oxideDefects

Gate Current vs Gate Voltage

From S. Y. Lo et al., IEEE EDL, May 1997.

Below ~20 Å direct tunneling causes excessive gate current

Fundamental Limit of Gate Oxide Thickness

- EELS O-k edge spectra recorded point by point across a gate stack containing a thin SiO_2
- Bulk SiO₂ properties (e.g. large bandgap) lost for film thickness \leq 8Å

D.A. Muller et al., Nature, 399, 758-761 (1999)

Why High-k MOS Gate Dielectrics ?

$$I_{channel} \propto charge x source injection velocity
\propto (gate oxide cap x gate overdrive) v_{inj}
\propto C_{ox} (V_{GS} - V_T) E_{source} \mu_{inj}$$
Historically C_{ox} has been increased by decreasing gate oxide
thickness. It can also be increased by using a higher K dielectric

$$I_D \propto C_{ox} \propto \frac{K}{EOT}$$
Long term
Today
20 Å SiO₂ K ≈ 4
Si

Same Electrical Thickness (EOT) \rightarrow same C_{ox} Larger physical thickness \rightarrow Reduce gate leakage

Requirements for the high-k dielectrics

- High dielectric constant ⇒ higher charge induced in the channel
- Wide band gap \Rightarrow higher barriers
- \Rightarrow lower leakage
- Thermodynamically stable on Si(001)
- Low bulk and interfacial trap densities.
- Stability at higher processing temperatures and environments

Robertson, J., Appl. Surf. Sci. (2002) 190 (1-4), 2

→ ZrO₂, HfO₂, amorphous Zr and Hf-silicate (with nitridation) are the promising candidates

Problems in High-k Dielectrics - 1

→ Mobility degradation is believed to be associated with the physical and electrical defects at the high-k/ Si(001) interface
 → Understanding the physical nature of the interfacial layer has been studied extensively

Problems in High-k Dielectrics - 2

• Unavoidable SiO₂ like interfacial layer (I.L) with low-*k* dielectric constant forms either during high-k deposition or post-deposition thermal treatment that determines overall capacitance

XTEM picture of ZrO₂/I.L./Si(001)

→ Need to minimize the I.L. layer or increase the dielectric constant of I.L.

Outline

🖕 Motivation

- Scaling limit of MOS Gate Dielectric
- Interface Issues in high-k/semiconductor (Si, Ge)
- Interfacial layer Engineering of high-k (ZrO₂)
 / Si(001) by Solid State Reaction
 - XPS, TEM, Electrical Results
- Chemical structures and Band alignment at HfO₂ / Ge(001) interface
 SR-PES, Electrical Results

Modulation of I.L. by Solid State Reaction

• By controlling solid state reaction kinetics after metal deposition, physical and electrical properties of I.L can be modulated.

XPS results after Zr depo. and Vacuum Anneal

Zr 3nm depo. on ~1.5nm Chemical SiO₂/Si \rightarrow *in-situ* Vacuum Anneal (<5x10⁻⁷ Torr, 200°C, 30min) \rightarrow *ex-situ* XPS

- Initial SiO₂ passivation layer dissociate forming Silicate or suboxide even at as-dep. Sample and this reaction is enhanced by *in-situ* anneal
- Vacuum anneal promote Zr-slilcide bond formation through partial decomposition of initial SiO₂ layer

XPS results after UV-oxidation

• Zr-silicide formed after vacuum annealing was oxidized to form a Zrsilicate phase in the subsequent UV-ozone oxidation treatment in the interfacial layer between ZrO2 / Si(001)

XTEM (with vs. without Vacuum Anneal)

 \rightarrow Higher-k Zr-silicate I.L. formed in the vacuum annealed sample

C-V and J-V (with vs. without Vacuum Anneal)

→ Vacuum annealed samples containing the silicate interface layer exhibited excellent dielectric characteristics, such as negligible capacitance-voltage hysteresis (~ 10mV), lower fixed charge density as well as reduced EOT (~4Å) compared to unannealed samples.

Outline

- Scaling limit of MOS Gate Dielectric
- Interface Issues in high-k/semiconductor (Si, Ge)
- Interfacial layer Engineering of high-k (ZrO₂)
 / Si(001) by Solid State Reaction
 XPS, TEM, Electrical Results
- Chemical structures and Band alignment at HfO₂ / Ge(001) interface
 SP-PES_Electrical Posults
 - SR-PES, Electrical Results

Benefit of High-k on Ge channel

- High-κ Gate Dielectrics → Avoid poor quality GeO₂ & Improve C_{ox}
- Ge channel → Intrinsic Mobility enhancement ; electron (2x) and hole (4x) compared to Si (001)

 $I_{channel} \propto$ charge • source injection velocity

 $\propto \ (\epsilon_r \ \epsilon_o A \ / \ t_{ox}) \bullet (V_{GS} - V_{th}) \bullet (E_{source} \times \mu_{inj} \)$ Better performance can be achieved by combining

high-k gate dielectric and high mobility Ge channel

 GeO_xN_y , Al_2O_3 , ZrO_2 , and HfO_2 have recently been studied as a high-*k* gate insulators on Ge,

Why does interface matter ?

- Physical and electrical structure at the interface is critical
- Chemical bonding nature → C-V, charge trapping, carrier scattering, etc...
- Energy band alignment \rightarrow I-V, conduction mechanism through dielectric

$$I_{tunneling} \propto \exp(-\frac{\Phi_B}{t_{ox}})$$

→ Photoemission study can provide both chemical bonding structure and valence band alignment at the interface

Synchrotron Radiation Photoemission Spectroscopy (SR-PES) Features @ SSRL

- 1. Spectroscopy Characteristics ;
 - Tunable (20~1500eV) Synchrotron Photon energy
 - Analyzer of PHI model 10-360 : Energy resolution of ~0.05 eV
 - Analyzer chamber base pressure : $\sim 5 \times 10^{-11}$ Torr

Sample Structure & Depth Profiling by HF-etching

1. Sample Fabrication

2. Depth Profiling Procedures

SR-PES with HF-etching times

Chemical Bonding of I.L. (Ge 3d core level)

No Ge⁴⁺ feature associated with stoichiometric GeO₂. \rightarrow Re-oxidation of Ge substrate following upper Hf metal oxidation leads to a very nonstoichiometric GeO_v layer at HfO₂/Ge interface

VB Offset Determination from VB spectrum

ERC Teleseminar, Feb. 10, 2005

VB from Ge (100) (17sec HF-etching)

→ VBM (Ge(001))= 74.8eV

VB from GeO_x / n-Ge (100) (15sec HF-etching)

VBM (GeO_x) = 72.6eV $\rightarrow \Delta E_v$ (Ge-GeO_x) = 2.2eV

VB from HfO₂ / GeO_x / Ge (8sec HF-etching)

Band Alignment of HfO₂/I.L.(GeO_x)/Ge(100) System

1 M. Oshima, et. al., Appl. Phys. Lett. 83, 2172 (2003)

2 J. Robertson, J. Vac. Sci. Tech. B, 18, 1785, (2000)

3 V. V. Afannas'ev, et. al., Appl. Phys. Lett. 81, 1053 (2002)

C-V & J-V of Pt/HfO₂/GeO_x/p-Ge(100) MOSCAP

Conclusions

✓ High-k(ZrO₂) /I.L / Si(001) : Demonstrate formation of a Zrsilicate interfacial layer between ZrO_2 and Si substrate can be controlled by the solid state reaction between Zr and an underlying SiO₂/Si substrate through *in-situ* vacuum anneals → excellent dielectric characteristics, such as negligible capacitance-voltage hysteresis (~ 10mV), lower fixed charge density, and reduced equivalent oxide thickness (~4Å) compared to un-annealed samples.

✓ High-k (HfO₂) /I.L / Ge(001) : By analyzing Ge 3d core levels systematically, we found that a very thin non-stoichiometric chemical nature exists at the HfO₂/Ge interface. From the VB spectra, the VB offset between Ge(001) and HfO₂, $\triangle E_v$ (Ge-HfO₂) = ~2.7 eV and resulting CB offset, $\triangle E_c$ (Ge-HfO₂) = 1.8~2.6 eV. → Need better surface passivation layer, but promising in terms of gate leakage current

Acknowledgement

- Special thanks to Prof. Yoshio Nishi and Prof. Baylor B. Triplett for helpful discussions, Kyunghoon Min and Uhno Kwon for assistance with TEM and Prof. Mike Kelly for analyzing XPS data.

- This work was supported in part by the NSF/SRC Center for Environmentally Benign Semiconductor Manufacturing and Initiative for Nanoscale Materials and Processes (INMP).

