Effect of Substrate Temperature for Plasma-Enhanced Chemical Vapor Deposition of Poly(methylmethacrylate) as a Sacrificial Material for Air Gap Fabrication

NSF/SRC ERB for Environmentally Benign Semiconductor Manufacturing

Tom Casserly, SRC/Novellus Fellow, Department of Chemical Engineering, MIT January 20, 2005

Thrust A2: Solventless Low-k Dielectrics

Why investigate air gaps?

- **Dense solutions are approaching the limit for OSG materials**
- **Integration of porous materials is an integration nightmare**
- Leap forward in performance increase as opposed to incremental improvements that face difficult challenges

Semiconductor International – January 1, 2005 Senior Editor, Laura Peters

- □ Argues for air gaps as a low-k alternative needed at this time
- Porous dielectrics have too many problems at least as many as their dense counterparts — and the overall benefit they deliver, represented as the effective k value, may be small given the integration, yield and reliability challenges they pose and the costs required to surmount them."

Why Air Gaps: Low-κ Solution

- Air has lowest dielectric constant
 - Faster Integrated Circuits
 - Decrease power consumption
 - Reduce cross-talk
 - Leads to fewer levels of interconnect
- Air has lowest refractive index
 - Use in optical filters/reflectors/refractors
- Closed cavity air gap
 - Additional applications in microfluidic devices

Anatomy of an Air Gap

Overlying Dielectric
 Organosilicate Glass (OSG)
 Remains as bridge layer

Metal Lines and Barrier Layers

Sacrificial Material

Poly(methylmethacrylate) (PMMA)Cleanly removed to form air gap

Criteria for Sacrificial Materials

- Ease of synthesis
- Decomposition in the absence of oxygen
- Desirable temperature range for decomposition
- Short decomposition time (small degradation fragments)
- Negligible residue
- Does not affect ILD and metal during deposition and removal
- Ability to be patterned
- Good mechanical properties & adhesion
- Survives aqueous and solution rinses

PECVD of Poly(methyl methacrylate) (PMMA)

MMA

Free radical polymerization of MMA gas to form PMMA solid

Pulsed Plasma-Enhanced CVD (PPECVD)

Poly(methyl methacrylate) (PMMA)

Bulk PMMA is insoluble in water and IPA at room temperature.

As a bulk polymer, PMMA is known for it outstanding mechanical properties.

Applications

- Used in orthopedic surgery
 - •Fix prosthetic components
 - Bone graft template
 - •Femoral window plug in total hip replacement
- •Used in various plastics, floor polish, glues, and packaging

PMMA Deposition and Characterization

- Polymerizes via vinyl bond to Poly(methyl methacrylate) (PMMA)
- Low duty cycle PPECVD retains much of PMMA funcitonality
- Thermally decomposes in the absence of oxygen to monomer form below 350°C

FTIR of Pulsed PECVD PMMA – 100W 10/90

Increased substrate temperature decreases oxygen incorporation into polymer backbone Improves the thermal stability requiring a higher temperature for onset of decomposition

FTIR of PECVD PMMA – 10W Continuous Plasma

Increased substrate temperature decreases oxygen incorporation into polymer backbone Improves the thermal stability requiring a higher temperature for onset of decomposition

Solubility in Acetone v. Substrate Temperature

Interferometry for Thermal Stability (ITS)

- Nitrogen purged annealing chamber
- Ramp to 150°C
- Hold for 30 min
- Ramp to 240°C
- Hold for 30 min
- Ramp to 410°C
- Hold for 1 hour
- Cool

 Example ITS scan for 10W CW sample deposited at 100°C
 Film swelling

Low molecular weight and weak bond breaking

□ Macro decomposition

Onset of Thermal Decomposition v. Substrate Temperature

Substrate Temperature during Deposition(°C)

Residue after ITS anneal ramp to 410°C

Fabrication of Enclosed Void utilizing PMMA

Microscale Air-Gap Fabrication

No Hard Mask Required

Etch Selectivity PMMA/PR ≥ 2

Fabrication of Enclosed Void

Air-Gap Microchannels

Width: 1 – 10 µm SiO₂ PMMA Substrate SiO₂ Air Substrate

Decomposition Profile

- 1. Quick ramp to 150°C
- 2. Hold for 10 min
- 3. 150 250°C: 5°C/min
- 4. Hold for 30 min
- 5. 250 300°C: 1°C/min
- 6. Hold for 30 min

Total Time: 140 min

Ambient: 1 atm (Air or N₂)

Top Down Optical Micrographs

200X – Spin Coated Resist over PMMA

500X – OSG over patterned PMMA

Cross-Sectional SEM

PMMA – Summary and Key Findings

- Low power PECVD is a viable method for depositing PMMA
 FT-IR confirms structural similarity to bulk PMMA
- PECVD PMMA has the desired properties
 - □ Decomposes at 230 to 350 °C
 - Negligible residue
- Closed-cavity air-gap microstructures successfully fabricated using conventional photolithographic and deposition tools
- Solubility of PMMA in acetone and isopropyl alcohol is inversely proportional to both the deposition power and substrate temperature
- Films deposited at lower temperatures contain CH₂-O-CH₂ linkages in the polymer backbone decreasing its thermal stability
- Onset of thermal decomposition increases with increased deposition temperature

Collaborate with Thrust D

Create Air-Gaps at the nanometer level

Low-power CW PMMA (complete removal)

- Direct pattern at Scanning Electron Beam Lithography (SEBL) Facility
- Cut wafer with Focused Ion Beam (FIB) and image with SEM

Acknowledgements

- The Gleason Group at MIT
- Elizabeth Sutton, UROP
- SRC/Novellus for Fellowship Funding
- NSF/SRC ERC for EBSM