NON-PFOS PHOTOACID GENERATORS: A POTENTIAL CANDIATE FOR NEXT GENERATION LITHOGRAPHY

<u>Ramakrishnan Ayothi</u> and Christopher K. Ober* Department of Materials Science and Engineering Cornell University, Ithaca NY, USA 14853

> Steve Putna, Wang Yueh and Heidi Cao Intel Corporation, Hillsboro OR, USA 97124

* cober@ccmr.cornell.edu

Chemical Amplification and Photoacid Generators

Table 1 Lithography and Sensitivity

		graphy and sens	leiviey
Lithography	y Energy	Resist Dose	Number of
	(eV)	(mJ/cm²)	quanta for
			50 nm pixel
ArF	6.4	20	500 000
EUV	<u>92</u>	2	3400
X-ray	<u>92</u> 0	40	6800
e beam	50000	150 (3 µC/cm²)	470
lon beam	100000	50 (0.5 µC/cm²)	78

Timothy A. Brunner J. Vac. Sci. Technol. B 21(6), 2632 (2003)

H. Ito C. G. Willson CG and J.M. J. Fréchet Digest of Technical Papers of 1982 Symposium on VLSI Technology 86 (1982); Hiroshi Ito Adv Polym Sci., 172, 37 (2005)

James V. Crivello J. Polym. Sci: Part A: Polym. Chem. 37, 4241 (1999) Hiroshi Ito Adv Polym Sci., 172, 37 (2005)

Photoacid Generators

Hiroshi Ito Adv Polym Sci., 172, 37 (2005)

Perfluorooctylsulfonate (PFOS)

Perfluoroalkylsulfonate (C₈F₁₇SO₃R; PFAS) family

Strong C-F bond – Unusual properties

 Surface treatment, Protective coatings, Performance Chemicals

PFOS Case Study, Intl .Biomonitoring Work Shop, (2004) Sept. 21

Perfluorooctylsulfonate (PFOS) PAG

Strong acid (pKa ~ -11) - sensitivity & speed

Non-polar tail - solubility, miscibility, low contamination, defects, thermal (MP = 170 °C) and hydrolytic stability

 Optical properties - Uniform exposure/image contrast

Size (272 cm³) - low acid volatility/diffusion length

Y. Suzuki et al., *SPIE* (1998); M.J. Bowden et al., *Proceedings - Electrochemical Society* (2002)

Perfluorooctylsulfonate (PFOS) PAG Issue

J. L. Lenhart et al., Langumir, 2005; W. Hinsberg et al., SPIE, 2004

2. Fluorine Absorption @ EUV

C. K. Ober et al., 3rd International EUVL Symposium, 2004

4. Bioaccumulation

K. E. Holmstrom et al., EST 2005

A. Hand, *Semiconductor International*, (2003); Jim Jewett, ERC Presentation (2005)

PFOS: Persistent, Bioaccumulation, Toxic (PBT) Concern

➤Fluorine – Long Biological Life

➤Global Distribution

≻Higher P_{ow} coefficient

Arctic (seals) Alaska (polar bear) Northwester Great Lakes Italy (birds) (river otters) bald eagles, fish Northern and other birds) Pacific(tuna) Coastal C Korea and Japan (birds) Mediterranean (fish, (birds and turtle) mammals, birds) North Pacific (albatrosses) Sampling locations of wildlife to monitor fluorinated organic compound sensuin seals) www.epa.gov/med/res_areas_comm_eco.htm Effect of PFOS on Wildlife

Canadian and Norwegian

Baltic Sea (eagles, mammals)

≻Toxic

"New non-PFOS PAGs for NGL"

J. P. Giesy et al., *Environ. Sci. Technol.* (2001); K. Kannan et al., *Environ. Sci. Technol.* (2001); PFOS Case Study, *Intl .Biomonitoring Work Shop*, (2004); L. Peters, *Semiconductor International*, (2004).

Next Generation Photoacid Generators

Properties	Parameters		
Sensitive			
	Molecular Structure		
Optimum absorption	Elemental composition		
	Molar volume		
Acid size	рКа		
	Boiling/Melting Point		
Acid strength	Hazards to Optics		
Low/no photoinduced outgooging	Photochemistry		
Lowino photoinduced outgassing	Chemical Linkages		
High thermal/hydrolytic stability	Molecular arrangements		
	Interaction between Functional groups		
Homogenous distribution and diffusion	Chain Vs nonchain		
	PAG cation-anion interaction		
Low/no leaching in Liquid media	Energy calculation		
	Partition coefficient		
Friendlier chemical – Non-PFOS			

Structural Consideration for Non-PFOS PAG Anions

Head - Sulfonic, carboxylic, methide and others

Polarizer - Group to maintain strong polarization of the head group

Spacer/Linker - Break Seal

Tail - Group to enhance miscibility, solubility, diffusivity, hydrophobic/hydrophilic

Christopher K. Ober et al., US Pat. Appl. No. 60/553,238

Non-PFOS anions: $[-CF_2-] < 8$ Persistent: $[-CF_2-] 4$ and > 4

"Unconventional Photoacid Design"

SPIE 2002 (3M)

13 Synthesis and Structural Identification of Non-PFOS PAG

Analytical Tool	Information
NMR (¹ H, ¹⁹ F, ¹³ C)	Purity
ESI-MS and Elemental	Purity/ Structure
TGA and DSC	Thermal Properties
UV-VIS/VUV spectroscopy	Absorption Characteristics, Residual acid, Solubility
ICP/AAS	Metal content
Lithography	Performance

<u>Key steps:</u> Substitution, Hydrogenation, Dehalogenosulfination, Dehalogenosulfonation, Chlorination/Oxidation, Ionexchange reaction, Esterification/Coupling

C.K. Ober et al., unpublished Results

Symposium, 2004

PAG CODE	PAG/POLYMER ABSORBTION (µm ⁻¹)	PAG ABSORBTION (µm ⁻¹)	% FLUORINE
Poly(hydroxystyrene) [PHS]	1.7325	-	-
PHS + PFOS	2.2943	0.5618 (24 %)	17.52
PHS + PFBS	2.0580	0.3255 (16 %)	10.40
PHS + TF	1.8393	0.1068 (6 %)	3.82
PHS + non-PFOS CUPAG9	1.8748	0.1423 (8 %)	4.70

[Poly (hydroxy styrene) = 6 %; PAG = 10 % (wrt to polymer): Cation – Triphenylsulfonium; % Transmittance - estimated using http://www-cxro.lbl.gov/optical_constants/filter2.html; Polymer density (1.19 g/cm³); Thickness = 125 nm; A = -log (T)/d (μ m⁻¹)]

Higher Absorption of PFOS – limits the formulation flexibility
Non-PFOS PAGs – Formulation flexibility

Effect of Fluorine Content on Sensitivity and Contrast at EUV

	Cation	Anion	Do	Contrast	F-contents	Acid-contents
			[mJ/cm ²]		[mmole]/g	[µmole]/g _{Polymer}
01	TPS	Nft	2,37	3,2	0,80 🔺	89
02	TPS	Hft	1,61	3,4	0,61	101
03	TPS	Tft	0,76	6,5	0,36	121
04	DPI	Tft	1,3	3,0	0,35	116
05	TPS-OH	Tft	1,97	4,99	0,33	109
06	TPS-OtBOC	Tft	1,94	13,92	0,20	66
07	PI	Tos-F	> 5,00	-	0,16	156
	PI	Tos-I	3,39	3,54	0	117
	PI	Tos	5,60	2,88	0	158
	D(t-BuP)I	Tos	> 6,00		0	89
					I	

- Low fluorine content better sensitivity and contrast (column 3 5) & (row 01, 02 & 03)
- Dissolution Inhibition better contrast (row 05 & 06)
- Sulfonium PAG are better than iodonium (row 03 & 04)
- Non-PFOS PAGs with chromphore having Sulfur

Wolf-Dieter Domke, Stefan Hirscher, Oliver Kirch, Karl Kragler, Klaus Lowack, Resist Characterization for EUVLithography 2. Int. EUVL-Symposium, 2003

17 PAG Distribution and their Effect on Resist Performance

1. PAG Segregation - T- Topping, Skin, Footing - Leaching in 193 nm immersion

2. Line Edge or Width Roughness - Excess Acid Diffusion and non-uniform PAG distribution

3. Depth profiling techniques - **Rutherford Back Scattering (RBS), Near Edge X-ray Absorption Fine Structure (NEXAFS)** and X-Ray Photo-electron Spectroscopy (XPS) - Surface and Bulk Distribution of PAGs

Cornell University

PFOS Vs Non-PFOS PAG Distribution by NEXAFS

J. L. Lenhart et al., *Langumir*, (2005)

C.K. Ober et al., unpublished Results

J. L. Lenhart et al., AIP Conference Proceedings (2003)

"Homogeneous Distribution for PAG with lower amount of fluorine (or non-PFOS) – better performance"

W. Hinsberg et al., SPIE (2004)

PAG Distribution Versus PAG Leaching : RBS, NEXAFS and XPS Analysis

Figure 7. XPS analysis - PAG Leaching versus Distribution

S. Kanna et al., SPIE (2005)

"Non-PFOS PAG with suitable hydrophobic/hydrophilic character"

<u>Corn</u>ell University

Impact of Photogeneratedacid (PGA) Structure on Resist Performance

Acid Pr	operties	Impact on Resist performance
Acid Strength	pKa	Deblocking efficiency, Photospeed, Sizing energy, PEB Sensitivity, delay stability
Acid Size	Molar volume	Diffusion, Resolution, loss/evaporation, delay stability
Acid Volatility	Boiling/Melting point	loss/evaporation, delay stability

R. D. Allen et al., *SPIE*, **1997**, 3049, 44; J. F. Cameron et al., *SPIE*, **1999**, 3678, 785 Ebo Croffie et al., *JVSTB*, **2000**, 18(6), 3340

Cornell University

Photoacid: Strength, Size and Volatility

PGA Structure	pKa (Taft)	Size (cm ³)	MP/BP (°C)
F F F F F F F F F F F F F F F F F F F	-4.77 (~11)*	272	197
F F F F F O O PFBSA F F F F F F F	-4.99 (NA)*	162	183
F S TMSA OH	-5.21 (>-12)*	79	172 (160)
	-3.80 to -4.87	110 to 190	180 to 285

* - Measured; **pKa** - D. D. Perrin, B. Dempsey, E. P. Serjeant, *pKa Prediction for organic acids and bases*, Chapman and Hall, London, 1981; **Size** - ACD lab; **MP/BP** - Marrero-Gani - Group Contribution Method

Effect of PAG size, Concentration on LWR at EUV

 3σ LWR (nm) for 150 nm L/S

- Smaller PAG better LWR appropriate diffusion length
- Larger PAG poor LWR PAG Clustering
- PAG concentration reduced LWR uniform deprotection

 3σ LWR (nm) for 100 nm L/S

Uniform PAG distribution

PAG clustering

Heidi Cao et al., SPIE (2004)

Effect of PAG Anion in Resist Performance at EUV

Table 4. Photospeed Consideration for EUV

PAG (Wt%/ PGA)	DUV Dose (mJ/cm ²)	EUV Dose (mJ/cm ²)	EUV R (nm)	3 σ LER at EUV Avg (nm)	
6/CS	46	5.4	80	11	
6/PFBS	48	3.8	80-90	9.7	
6/PFOS	46	6	80-90	10	
6/PFBzS	19	3.6	80-90	9.2	

No. of F atoms	Acid Size (cm ³)	PAG (Wt%/ PGA)
0	174	6/CS
9	162	6/PFBS
17	272	6/PFOS
5	133	6/PFBzS

P. M. Dentinger et al., JVSTB (2002)

"Smaller PAG Anion, with minimum amount of fluorine"

Table 5. Threshold Acid Concentration (µmol/cm³)

Wavelength	ND- Triflate	TPS - Triflate	DTBI- PFOS	DTBI- Triflate	
248 nm	7.8	6.5	23.8	12.3	
30 keV e-beam	7.1	14.6	15.0	58.3	"Higher Number of fluorine
13.4 nm EUV	5.0	13.2	10.4	21.5	higher energy"
1.0 nm x-ray	7.0	22.3	16.0	26.3	

C. R. Szmanda et al., JVSTB (1999)

Cornell Non-PFOS PAG Performance at EUV

Resist	PGA	EUV Dose (mJ/cm²)	EUV R (nm)	3 σ LER at EUV Avg (nm)
Polymer	non-PFOS PGA	2 - 7	40 - 80	7.3 - 11.1#
Molecular Glass Resist	5/PFBS	31*	30 - 35	4.3*
Molecular Glass Resist	5/non-PFOS PGA	21*	25 - 30	5.0*

- LER @ 100 nm; * Energy to Size & LER @ 60 nm

C.K. Ober et al., unpublished Results

Environmental Properties of non-PFOS Photoacids

- Non-PFOS anions low fluorine content (BCF Chain length dependent - 3M)
- Functional groups
- Bioaccumulation -Partition coefficient (P K) and or **Bioconcentration** Factor (BCF)
- Estimation structural/ electronic properties Or biological properties (EPA Suite)
- EHSR Profile Toxicity (eco mammalian) and and **Bioconcentration factor**

26

Summary and Outlook

•PAGs, PFOS and PFOS PAGs

•Structural design, synthesis, identification and properties

 Absorbance, Segregation, Performance, Bioaccumulation -Non-PFOS PAG

Non-PFOS PAG anion low/no bioaccumulation

Acknowledgement

- Funded by Intel corporation Dr. Steve Putna, Dr. Wang Yueh and Dr. Heidi Cao
- OBER GROUP Dr. Yi Yi, Dr. Xiang Qian Liu, Dr. Seung Wook Chang, Nelson Felix, Dr. Sitaraman Krishnan, Marvin Paik
- EUV Exposure @ Sandia National Lab with Intel
- EUV Exposure @ Lawrence Berkeley Patrick Naulleau
- Cornell Center for Materials Research (CCMR)
- Cornell NanoScale Science and Technology Facility (CNF)

Cornell University