Methodology for environmental impact evaluation with 2D v. 3D case study

> ERC Teleseminar 06/16/2005

Ajay Somani and Rafael Reif Microsystems Technology Laboratories, MIT

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

1

Outline

- Motivation for Methodology
- Background of Environmental Impact Assessment
 - LCA and LCI
 - Existing Methods
 - Other important and related works
- Our Approach/Methodology
 - Objective
 - Description
- Case Study 2D v. 3D
 - Assumptions
 - Typical Process Flow for 2D and 3D
 - Comparison and preliminary conclusions
- Future Work

Motivation for Methodology

Manufacturing Cost (in \$)

 New technology Option 2
 New technology
 Option 1
 Existing technology

Performance (speed, reliability)

Arbitrary Example

- Each semiconductor technology can be mapped on manufacturing cost and performance axis
- In reality, performance is not single axis but has multiparameters such as speed, power, reliability etc.
- All these parameters can be measured and modeled depending upon specific applications
- Performance parameters can also be easily correlated to revenue (\$\$) depending on market size
- Having models which can model performance like speed, reliability helps in deciding the future course of technology

Motivation for Methodology

Manufacturing Cost (in \$)

EH85

Performance (speed, reliability)

- Need for EH&S as 3rd axis, so technology can be mapped on space rather than plane, help in decision making
- EH&S like performance has multivariables
- Health and Safety are hard to quantify
- So for now, Environmental Impact will be used as 3rd axis
- Even environmental is multiparameter like energy, water and materials consumption and emissions
- These parameters can be related to cost (\$\$) through CoO models.
- To put Environment as 3rd axis, we need to have method or approach to quantify

Background of Environmental Impact Assessment –LCA &LCI

- LCA Life Cycle Analysis assessment of a product's full environmental costs, from raw material to final disposal, in terms of consumption of resources, energy and waste (product specific)
- LCI Life Cycle Inventory accounting of the energy and waste associated with the creation of a new product through use and disposal (process specific and knowledge or data can be extended to other products)

Background of Environmental Impact Assessment –Existing Methods

- CARRI (Computer Aided Relative Risk Impact)
 - Designed to assess relative risk of alternative manufacturing processes based on mass/flow and exposure information
 - Relies on its database to evaluate risks, therefore can not evaluate new chemicals
- DFESH (Design for Environment Safety and Health)- Mass/Energy Balance
 - Designed to evaluate mass and energy consumed, transformed and discharged from fabs
 - Has 57 unit operations with input data as process information and output data as air emissions and chemical wastage discharge
- The Target Method
 - Developed as a method to evaluate the environmental aspects of commercial and industrial activities in relation to earth's "carrying capacity"
- EnV-S (Environmental Value System Analysis)
 - Developed as a "bottom-up" equipment-centric approach to support both the analysis of EH&S and the design of semiconductor manufacturing process
 - Compares the overall environmental footprints of alternative technology

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Background of Environmental Impact Assessment -Other Important Works

- Eric Williams Environ Sci. Tech. 2002, 36, 5504-5510, LCA of 32 MB DRAM
 - Identified fabrication is most energy expensive stage
 - Identified etchants, acids/bases, photolithographic chemicals and chemicals used in processes
- Cynthia Murphy Environ Sci. Tech. 2003, 37, 5373-5382, Parametric inventories for material, energy and emission
 - Developed parametric unit operation modules to predict changes in inventory as a result of changes in process flow and product design
 - Did a case study for energy in comparing two process flows with different number of metal levels
- Intel's paper IEEE Symp. on Elec. & Environ. 2004, 97-103
 - Compared two generations of semiconductors
 - Defined major outputs such as PFC emissions, VOC's, HAP's, chemical wastage produced during semiconductor manufacturing

Objective of New Approach/Methodology

- "Fast" Can help in decision making
- Identify problems/uncommon processes within new process technology
- Need to be quantitative, so can be compared easily (need not to be accurate)
- Will help building on LCI for all common semiconductor manufacturing processes such as Dielectric Etch, PECVD etc.
- For sake of completeness, new or uncommon processes will be estimated using existing knowledge

Description of New Approach/Methodology

- Identify standard or existing process flow and use current database or LCI for unit processes to estimate environmental impact
- For unit steps, where no database exist, need to estimate the environmental issues with process knowledge
- Assume emissions and consumption linearity with design parameters such as deposition thickness, volume etched
- Identify new steps or processes in new technology which needs to be evaluated
- Eventually, new/additional processes environmental footprint is compared with existing technology in order to understand the relative change
- Identified six environmental issues, which will be addressed in this approach – energy, water, emissions (PFC), HAP's, VOC's and chemical wastage
- So far, no packaging is considered, just focused on fabrication unit processes

Example- Strained Silicon technology

- No change in Back end
- Few additional/new steps in Front end
- New step like depositing epitaxial Ge along with Si, is very much like epitaxial deposition of Si (except need to evaluate GeH₄) and also additional annealing steps to relax Si-Ge layers
- Eventually, need to compare additional new steps with environmental footprint of existing standard technology

Case Study 2D v. 3D

- Typical 2D process flow is created for 250 nm process technology (using help of textbook and MTL standard flow)
- All unit processes are tabulated and with help of existing literature and some estimates, extrapolation of data is conducted to come up with basic environmental footprint
- New/additional 3-D processes were identified
 - Grinding has been estimated using oxide CMP
 - Bonding was another new process has been estimated like annealing (with pressure term as another additional energy consumption)
 - Besides all the other process were common

Assumptions in 2D process flow

- Twin-well CMOS process for Logic device with 7 metal layers
- Process flow for this 0.25 µm technology created with help of textbook (Silicon VLSI technology by Plummer)
- Process parameters were either taken from text or from process knowledge gathered from fabrication experience
- Overall process has 63 steps in front end with 1st metal level and 14 dual damascene steps repeated 6 times (84 at back end)
- LOCOS used instead of STI for isolation
- 1µm photoresist is used as standard process for all photo steps and ashing/piranha is done for striping resist
- First metal layer is AI with W plugs
- All other 6 metal layers and vias use Cu (dual damascene via first approach)
- Full RCA is conducted each time for clean i.e. SC1/dump/HF/dump/SC2/dump/dry
- Post CMP clean comprises of SC1 only

Unit Processes for 2D

Unit Processes	Front End	Back End
Photo	11 times (typical 1µm)	14 times (typical 1µm)
Piranha (removing photo)	11 times (typical)	
Oxide wet etch and	2 times	
TiN metal etch	1 time	
RCA clean (also include pre-metal)	8 times	9 times
Post CMP clean (oxide and Cu)		14 times
CVD W		1 time (750 nm)

Unit Processes for 2D

Unit Processes	Front End	Back End
PECVD oxide/ SiN (hard cap)/ BARC	1 time (Spacer 200 nm)	7 times (1200 nm)/ 6 times (30nm)/ 6 times (30nm)
LPCVD poly-Si/ Si ₃ N ₄	1 time (gate 400 nm)/ 1 time (LOCOS 80nm)	
Sputtering Al/Ti/ Ta-Cu		1 time (500 nm)/ 1 time (200 nm for making contacts)/ 6 times (10- 20 nm)
Electrodeposition Cu		6 times (for 1400 nm)
CMP Cu/W		6 times (Cu)/ 1 time(W)
CMP oxide		7 times

Unit Processes for 2D

Unit Processes	Front End	Back End
Ion Implantation	5 times (p-type)/ 4 times (n-type)	
Annealing/ thermal oxidation	1 time (furnace 4-6 hrs @1100C)/ gate oxide (10 nm)/ 2 times screen oxide (20 nm) and LOCOS(400 nm)/ 5 times RTP	
Oxide etch/ SiN (hard cap) and BARC opening	1 time spacer etch for 200 nm/ 1 time dry etch Nitride (LOCOS 80nm)	7 times (Via opening etch for 1000 nm)/ 6 times (line etch 500nm)
Poly-Si etch	1 time (gate etch)	
Al dry etch	1 time (500 nm)	
Ashing	11 times (typical)	14 times (typical)

First-Order Assumptions in Energy Estimation for 2D process flow

- Each unit operation is counted no. of times it appears in process flow and multiplied with average time required to average energy
- Processes like furnace annealing and thermal oxidation, CMP (Cu and oxide), electrodeposition of Cu and metallization (by PVD) are treated similar in energy consumption as a lack of data and similarity in the processes
- Pattern etch for all different materials are treated in similar way
- Clean is approximated as wet etch in terms of energy

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Energy Estimation for 2D

Unit Operation	No. of times each operation	Wafers/run	Wafers/hr	Power (KW)
Implant	9	25	20	27
CVD	11	10	15	16
Clean/ Wet etch	31/14 (45 total)	50	150	8
Furnace	2	150	30	21
RTP	5	1	10	48
Oxidation	4	150	30	21
Etch	17	1	30	135
Ashing	25	1	20	1
CMP (Cu and ox)	14	1	25	29
Photo (coater)	25	1	60	90
Stepper	25	1	60	115
Electrodeposition	6	1	20	120
Sputtering	8	1	25	150

Available LCI Data and Sources

- Peter Dahlgren's Sematech Study (LCI)
 Implanter, PECVD, Wet Spin etcher
- Cynthia Murphy's work
 - Furnace processes such as oxidation and annealing
 - Energy consumption for most of the unit processes for 0.13µm technology acquired with the help from Sematech and some other member companies
- Guess estimates

New/Additional Processes in MIT's Cu-Cu bonding 3D Process Flow

Unit operations	Description and no. of times
PECVD oxide	200 nm on handle wafer (Once)
Sputtering Al	20 micron-release layer on handle wafer (Once)
Sputtering Ta/Cu	50/300 nm on Handle wafer+ bond pads
CMP Cu	Twice before bonding
Grinding/ CMP Si	First layer of device wafer
Wet etch	Thrice (After grinding Si etch TMAH, BOX etch, Al release layer by HCI:H2O)
Photo	Once to make bond pads at back side
Dry etch	Si & ILD to make contacts/ etch oxide (twice)
Bonding	Twice (Handle to device & device to device)
Ashing	Once (Strip PR)
Electrodeposition Cu	Once in contacts formed at back side

Comparison b/w 2D and 3D in Terms of Processes

Unit operation	2D process flow (for one wafer)	Additional 3D processes in flow
Photo/stepper/ashing	25	1
Dry Etch	13	2
Wet etch/Clean	31/14	3/4
CVD	11	1
СМР	14	2
Sputtering Al	1 (0.5 µm for metal 1)	1 (20 µm)
Sputtering Ta/Cu	6	1
Electrodeposition Cu	6	1
Bonding	0	2
Grinding	0	1

First-Order Energy Comparison in 2D v. MIT's 3D Process Flow

- Sputtering 20 micron AI for release layer seems outrageously huge number and largely energy consuming
- Bonding and Grinding are new processes which needs to be estimated
- Besides these all processes are small in percentage as compared to full process flow, so can be easily ignored
- Grinding can be estimated using CMP, just that it takes a bit longer to thin wafer but energy usage must be similar
- Bonding can be estimated using vacuum process with temperature budget of 300 degrees centigrade for half an hour

Conclusion and Future Work

- Methodology for environmental evaluation has been established
 - Establish environmental footprint or impact for standard flow
 - Compare it with new/additional significant processes
- MIT 3D technology has been studied as case study from energy standpoint
- Other 3D technology such as RPI, IBM, Intel needs to be compared from environmental standpoint
- Needs to complete LCI data for other unit operations by literature survey or by experimentation
- Similar comparisons like energy for other environmental axis such as air emissions like VOC's, HAP's and GWP gases

Acknowledgments

- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing for funding
- Microsystems Technology Laboratories, MIT