Structure-Property Relations in ALD-Grown HfO₂ Gate Dielectrics: Effects of Precursor Chemistry

R. Sreenivasan¹, P.C. McIntyre¹, K.C. Saraswat²

¹ Department of Materials Science Eng., Stanford University ² Department of Electrical Eng., Stanford University

Funding: MARCO MSD Center, NSF/SRC Center for Environmentally-Benign Semiconductor Manufacturing

Outline

- Need for high-k dielectrics
- Atomic Layer Deposition
- Choice of Precursors
- Electrical Characteristics of HfO₂ films
- Si Surface Passivation prior to ALD
- Summary and Future Work

High-k Dielectrics

Gate leakage current increases exponentially with decrease in t_{ox}

S.-H. Lo et al., IEEE Electron Device Lett. 18, 209 (1997).

High-k Candidates

Dielectric	к	Bandgap (eV)	∆E _c to Si	∆E _v to Si
SiO ₂	3.9	9	3.5	4.4
Si ₃ N ₄	7	5.3	2.4	1.8
Al_2O_3	9	8.8	2.8	4.9
ZrO ₂	25	5.8	1.4	3.3
HfO ₂	25	6.0	1.5	3.4

 $\underline{\text{ZrO}}_{\underline{2}} \text{ and } \text{HfO}_{\underline{2}}$

- Thermodynamically stable on Si
- Acceptable band offsets to Si
- High dielectric constant

Atomic Layer Deposition

Schematic of the ALD process

- Self-limiting growth
- Highly conformal, low defect thin films
- Very good step coverage
- Low temperature deposition
- Excellent control over film thickness
- Uniform thickness over large areas
- Good control of stoichiometry
- Abrupt interface to the substrate

(courtesy Hyoungsub Kim)

Choice of Precursors

Chlorides

- 1. HCl is a by-prod of the reaction and is very corrosive
- 2. Chlorine contamination of the films
- 3. Solid source: gas line clogging and particle contamination

Alkylamides

- 1. No harmful by-products
- 2. No chlorine contamination
- 3. Liquid or low melting solid at RT
- 4. High growth rates

HfCl₄

Tetrakis(diethylamino)Hafnium TDEAH

Stanford ALD Chamber

ALD Process Parameters

	HfCl ₄	TDEAH	
Substrate temp	300 °C	150 °C	
Bubbler temp	150 °C	65 °C	
Pulsing	1-60-1-60	1-50-1-50	
Dep rate	0.5Å/cycle	0.75Å/cycle	
Chamber wall	R.T	75 °C	
Oxidizer	H ₂ O	H ₂ O	
N ₂ (carrier gas)	20 sccm	2.5 sccm	
Process Pr	0.5 Torr	0.5 Torr	

Capacitor Structure

C-V Hysteresis

Alkylamide Chloride 1.6x10⁻⁶ 1.6×10^{-6} Hf Cloride Process 1.4x10⁻⁶ 1.4x10^{-€} Hf Amide FGA 400C **FGA 400C** 1.2x10⁻⁶ 1.2x10⁻⁶ •01x0.1) 0.8 (E/cm2) 0.8 (E/cm2) 10kHz 1.0x10⁻⁶ — 10kHz 100kHz C (F/cm2) – 100kHz 800kHz — 800kHz 8.0x10⁻⁷ 6.0x10⁻⁷ 6.0x10⁻⁷ 4.0x10⁻⁷ 4.0x10⁻⁷ 2.0x10⁻⁷ 2.0x10⁻⁷ 0.0 0.0 -2.0 -0.5 0.0 0.5 -1.5 -1.0 1.0 1.5 2.0 -2 $t_{HfO2} = 45$ Å, $\overset{Vg}{I.L} = 15$ Å $t_{HfO2} = 50$ Å, I.L = 15Å Cap derived EOT = 23.1Å Cap derived EOT = 23.2Å Hysteresis ~ 20 mV Hysteresis ~ 5 mV

Leakage Current

Comparable leakage currents were observed on MOSCAP structures on HfO₂ grown using HfCl₄ and TDEAH.

EOT = 23Å

TEM x-section

x-section TEM image shows a uniform amorphous HfO_2 film deposited on chemical oxide.

 HfO_2 thickness = 45Å I.L (chem ox) = 15Å

Effect of Precursor on V_{FB}

(Yee-Chia Yeo, et. al. IEEE EDL, 2002)

Impurities in HfO₂

Carbon and nitrogen impurities were below the detection levels of the XPS. In comparison, 1-2 atomic % Cl was typically detected from as-grown $HfCl_4$ -derived films.

Templates for ALD

Electrical Characteristics

Summary and Future Work

Summary

- We have successfully grown high quality HfO₂ thin films on silicon substrates using the ALD process.
- The electrical characteristics of the HfO₂ films grown using TDEAH are far superior to those obtained using the chlorides.
- The carbon and nitrogen impurity levels in the films were below the detection limits of the XPS.
- The low substrate temperature for the alkylamide process will facilitate area selective ALD on patterned substrates.

Future Work

- Study the crystallization kinetics of ALD HfO₂ grown using TDEAH.
- Optimize the ALD TaN process for in-situ gate electrode deposition