

Vacuum Beam Studies of Radical-Surface and Ion-Surface Interactions

Yoshie Kimura Prof. David B. Graves Department of Chemical Engineering University of California, Berkeley Berkeley, California May 12, 2005

Vacuum Beam Systems

- Gas phase and surface chemistries are coupled
- Difficult to determine the reactants and products

- De-couple the gas phase and surface chemistry
- Determine the individual and synergistic effect of neutral and ion species on the substrate
- Determine the products

- Substrate is placed in a high vacuum chamber
 - No gas phase collisions between the radicals and ions from the sources and the products
 - Neglect gas phase chemistry
- 3 key measurements:
 - Characterization of the species flux from the sources to the surface
 - In situ substrate modification detection
 - Characterization of the product from the surface reaction or the reflected species

Current Vacuum Beam System

- Commercial radical source (Oxford Applied Research)
- Commercial ion source (RBD Electronics)

substrate

For the 3 key measurements:

- Threshold ionization mass spectrometer (TIMS) for radical fluxes
- Faraday cup for ion flux
- Quartz crystal microbalance (QCM): in situ etch/deposition rate
- Attenuated total internal reflectance Fourier transform infrared spectroscopy (ATIR-FTIR): *in situ* surface function groups
- TIMS to detect reflected and desorbed species from the surface

Radical Flux Determination

Determining Reflected/Desorbed Species

Sample is positioned in the exact previous location of the mass spectrometer!

QCM Sample

Studies with QCM: Porous HSQ

- Ar⁺ incident angle effect on yield with and without F atoms
- Compared porous HSQ to blanket SiO₂

Studies with QCM: Ar⁺ Sputtering

- Both exhibit a peak at 60° - 70°
- The yield is higher for $HSQ(\sim 2x)$
- Consistent with literature data for SiO₂

Cal

Studies with QCM: F and Ar⁺ Etching

•HSQ angle dependence flattens near 60°-70°
•SiO₂ yield increases but angle dependence similar
•The yield is significantly higher (~ 3x) for HSQ

11

Cal

Studies with QCM: Ar⁺ Sputtering after F atom exposure for HSQ

- After F exposure, HSQ loses the peak at $\sim 60^{\circ}$
- Yield higher after F exposure, but not as high as simultaneous exposure
- Enhanced rate after F exposure persists for ~ 400 nm (film thickness)
- Suggests significant F uptake by pores throughout HSQ

ATIR-FTIR Setup

• Detecting surface functional groups due to radical and ion fluxes

ATIR-FTIR Setup: Plane A

Detect surface functional group changes *in situ* during radical and ion exposure by detecting light absorption differences

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Vacuum Beam System

TIMS for radical fluxes

- QCM for in situ etch/deposition rate determination
- ATIR-FTIR for *in situ* surface function groups
- TIMS to detect reflected and desorbed species from the surface

Example Study: $C_x F_y$ Films Exposure to O and NH_3

 \bullet O atoms play a key role during ashing to remove any $C_{x}F_{y}$ residual film on via walls

• If $C_x F_y$ residual film remain after ashing, the film would be exposed to precursor for barrier deposition such as NH_3

How do O atoms and NH_3 affect residual C_xF_y films?

- Deposited two types of C_xF_y films on QCM and ATIR crystals
- Observed etch/deposition rates during O and NH₃ exposure
- Observed products from the surface reactions
- Observed functional changes due to NH₃ exposure

Example Study: System Overview

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Cal

TIMS: C_xF_y Films Deposition Deposited 2 types of $C_x F_y$ films with c- $C_4 F_8$ and Ar plasma

- Commercial scale ICP chamber ³
- QCM: ~150 CF₂ monolayers

- Homemade plasma radical source used on the vacuum beam system
- QCM: $\sim 50 \text{ CF}_2$ monolayers

3 Hsu, J.

ATIR-FTIR: C_xF_y Films

• C_xF_y film from plasma radical source contains oxygen in the film

QCM: Etch/Deposition of C_xF_y Films

C _x F _y Film	Flux of O or NH ₃	Etch Rate $(CF_2/cm^2/s)$
Radical Source	$4.6 \times 10^{14} \text{ O/cm}^2\text{/s}$	3.1×10^{12}
ICP Chamber	$7.0 \times 10^{13} \text{ O/cm}^{2/s}$	$1.9 imes 10^{11}$
Radical Source	$6.7 \times 10^{13} \text{ NH}_3/\text{cm}^2/\text{s}$	$6.7 imes 10^{11}$
ICP Chamber	$6.7 \times 10^{13} \text{ NH}_3/\text{cm}^2/\text{s}$	$-1.4 imes 10^{11}$

Low reaction probability: < 1%Deposition for NH₃ for film deposited in ICP chamber

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Cal

TIMS: Product Distribution

• Observe products during NH_3 exposure on C_xF_y from ICP Chamber Net QCM rate is the result of NH_3 deposition and product desorption

TIMS: CF₄ Signal

• CF₄ signal is much large for NH₃ exposure than for O exposure

Net QCM rate observed is the difference between *large* NH_3 deposition and *large* product desorption flux

ATIR-FTIR: NH₃ Exposure

- Large increase in -NH_x signal
- Small increase in -CH_x signal
- Decrease in -CF_x signal

- NH_3 is highly reactive on C_xF_y films
- Changing the film from C:F to C:N:H

Example Study:

C_xF_y Films Exposure to O and NH₃

- O atoms react at less than 1% probability:
 - QCM detection
- NH₃ is highly reactive
 - TIMS signal of CF₄
 - ATIR-FTIR detection of -NH_x
- NH_3 modifies the C_xF_y film into a film with C, N, and H
 - TIMS product distribution
 - ATIR-FTIR increased detection of $\text{-}NH_{x}$ and $\text{-}CH_{x}$ and decrease detection of $\text{-}CF_{x}$
 - QCM net mass change rate

Concluding Remarks

Vacuum Beam System

TIMS for radical flux characterization QCM for *in situ* etch/deposition rate determination ATIR-FTIR *in situ* surface functional change detection TIMS for product/reflected flux characterizaiton

- QCM study of F and Ar⁺ etching of porous HSQ
 - F contamination in the pores
- System study of O and NH_3 exposure on C_xF_y films

System designed to reveal fundamental radical-surface and ionsurface interactions

