Vacuum Beam Studies of
Radical-Surface and lon-Surface
Interactions

Yoshie Kimura
Prof. David B. Graves
Department of Chemical Engineering
University of California, Berkeley
Berkeley, California
May 12, 2005

| NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing|




Vacuum Beam Systems Gt
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reactants and products synergistic effect of neutral and
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Vacuum Beam Studies Gt

= ad Products

< sybstrate

e Substrate Is placed in a high vacuum chamber
* No gas phase collisions between the radicals and ions from the
sources and the products
* Neglect gas phase chemistry

3 key measurements:
» Characterization of the species flux from the sources to the surface
e In situ substrate modification detection
 Characterization of the product from the surface reaction or the
reflected species
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Current Vacuum Beam System Gt

 Commercial radical source
Products
Rad (Oxford Applied Research)
e Commercial 1on source
(RBD Electronics)

su bstrate

For the 3 key measurements:

 Threshold ionization mass spectrometer (TIMS) for radical fluxes
 Faraday cup for ion flux

 Quartz crystal microbalance (QCM): in situ etch/deposition rate

o Attenuated total internal reflectance Fourier transform infrared
spectroscopy (ATIR-FTIR): in situ surface function groups

* TIMS to detect reflected and desorbed species from the surface
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Threshold lonization Mass Spectrometry «
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Radical Flux Determination
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Determining Reflected/Desorbed Species «
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QCM Sample Gt

* QCM frequency change is
proportional to the mass change of
the film

Radical Source

Neutralizing Filament

~_lon source - 57°

<> )
AV

Transfer Arm
Rotational Feedthrough OCM B |_oad lock

| NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing| 8




Studies with QCM: Porous HSQ Gt

« Art Incident angle effect on yield with and without F atoms
« Compared porous HSQ to blanket SiO,

atom Source
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Studies with QCM: Ar* Sputtering Gt

 Both exhibit a peak at 60°-70°
 The yield is higher for HSQ (~ 2x)
» Consistent with literature data for SiO,,

HSQ SiO,
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Studies with QCM: F and Ar* Etching

*HSQ angle dependence flattens near 60°-70°
*S10, yield increases but angle dependence similar
*The yield is significantly higher (~ 3x) for HSQ
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Studies with QCM: Ar* Sputtering after %

F atom exposure for HSQ

o After F exposure, HSQ loses the peak at ~60°

e Yield higher after F exposure, but not as high as simultaneous exposure
» Enhanced rate after F exposure persists for ~ 400 nm (film thickness)
 Suggests significant F uptake by pores throughout HSQ
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ATIR-FTIR Setup Gl

 Detecting surface functional groups due to radical and ion fluxes

Plane A =
IR light

ZnSe Windo
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ATIR-FTIR Setup: Plane A Gt

FTIR Light Source IR Light Detector

Surface modification

E/E \/ / from radicals and ions

Detect surface functional group changes in situ during radical and ion
exposure by detecting light absorption differences
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Vacuum Beam System

o ad Products

su bstrate

TIMS for radical fluxes
* QCM for in situ etch/deposition rate determination
 ATIR-FTIR for in situ surface function groups

* TIMS to detect reflected and desorbed species from the surface
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Example Study: Gt
C,F, Films Exposure to O and NH,

* O atoms play a key role during ashing to remove any C,F,
residual film on via walls

« If C,F, residual film remain after ashing, the film would be
exposed to precursor for barrier deposition such as NH,

How do O atoms and NH; affect residual C,F,, films?

* Deposited two types of C,F, films on QCM and ATIR crystals
 Observed etch/deposition rates during O and NH, exposure

» Observed products from the surface reactions

 Observed functional changes due to NH, exposure
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Example Study: System Overview Gt

Homemade plasma radical source: * C,F, radicals/stable species

 c-C,Fg and Ar
e O atoms

* O, and Ar
* NH,
* NH,

1
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| |
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TIMS: C,F, Films Deposition Gt

Deposited 2 types of C,F, films with c-C,F; and Ar plasma
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ATIR-FTIR: C,F, Films Gt

— CxFy Film from a Plasma Radical Source
— CxFy Film from a Commercial-Scale ICP Chamber

Relative Absorbance

* C,F, film from plasma radical source contains oxygen in the film
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QCM: Etch/Deposition of C,F, Films

C,F, Film | Flux of O or NH, (EtF‘j)CEit/es)
Radical Source| 4.6 x 1014 O/cm?/s 3.1 x10%
ICP Chamber | 7.0 x 10%3 O/cm?/s 1.9 x 104
Radical Source | 6.7 x 1013 NH,/cm?/s 6.7 x 104
ICP Chamber | 6.7 x 10% NH,/cm?/s -1.4 x 104

Low reaction probability: < 1%
Deposition for NH, for film deposited in ICP chamber

| NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing|

20



TII\/IS Product Dlstrlbutlon Gt
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* Observe CNF produéfs for NH; exposure
* Observe products during NH; exposure on C,F, from ICP Chamber

Net QCM rate is the result of NH; deposition and product desorption
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TIMS: CF, Signal Gt

Scr4

Radical Source ICP Chamber Radjcal Source ICP Chamber
O Atom O Atom NH; NH,

\ \ \

 CF, signal is much large for NH; exposure than for O exposure

Net QCM rate observed is the difference between large NH,
deposition and large product desorption flux
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ATIR-FTIR: NH, Exposure Gt

-NH,

-CH,

i ‘hﬁ by Llie
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- Large increase in -NH, signal | * NHsls highly reactive on C,F,

e Small increase in -CH, signal - films _
e Decrease in _CFX Signa| * Changlng the film from C:F to
) C:N:H
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Example Study: Gt
C,F, Films Exposure to O and NH,

« O atoms react at less than 1% probability:
e QCM detection

* NH; Is highly reactive
e TIMS signal of CF,
e ATIR-FTIR detection of -NH,

* NH; modifies the C,F, film into a film with C, N, and H
e TIMS product distribution
* ATIR-FTIR increased detection of -NH, and -CH, and decrease
detection of —CF,
* QCM net mass change rate
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Concluding Remarks

Vacuum Beam System
TIMS for radical flux characterization
QCM for In situ etch/deposition rate determination
ATIR-FTIR in situ surface functional change detection
TIMS for product/reflected flux characterizaiton

e QCM study of F and Ar* etching of porous HSQ
 F contamination in the pores

* System study of O and NH; exposure on C,F, films

System designed to reveal fundamental radical-surface and ion-
surface interactions
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