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Vacuum Beam Systems

plasma
substrate

Ion Source
ProductsRadical Source

Vacuum Beam System

• Gas phase and surface 
chemistries are coupled

• Difficult to determine the 
reactants and products

• De-couple the gas phase and 
surface chemistry

• Determine the individual and 
synergistic effect of neutral and 
ion species on the substrate

• Determine the products  
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Ion Source
ProductsRadical Source

Substrate

Vacuum Beam Studies

• Substrate is placed in a high vacuum chamber
• No gas phase collisions between the radicals and ions from the 
sources and the products
• Neglect gas phase chemistry

3 key measurements:
• Characterization of the species flux from the sources to the surface
• In situ substrate modification detection
• Characterization of the product from the surface reaction or the 
reflected species
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Current Vacuum Beam System

Ion Source
ProductsRadical Source

• Commercial radical source 
(Oxford Applied Research)

• Commercial ion source 
(RBD Electronics)

substrate

For the 3 key measurements:

• Threshold ionization mass spectrometer (TIMS) for radical fluxes
• Faraday cup for ion flux
• Quartz crystal microbalance (QCM): in situ etch/deposition rate
• Attenuated total internal reflectance Fourier transform infrared 
spectroscopy (ATIR-FTIR): in situ surface function groups
• TIMS to detect reflected and desorbed species from the surface
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Threshold Ionization Mass Spectrometry
−+− ++→+ e2OOeO2 EO2→O+=20 eV

−+− +→+ e2OeO EO→O+=14 eV Direct Ionization1

Dissociative Ionization2

0

1

13 17 21 25eV

Si
gn

al

TIMS: 16 AMU signal

−+−

−+−

++→+

+→+

e2OOeO

e2OeO

2

−+− +→+ e2OeO

0

1

0 16 32
AMU

Si
gn

al

−+−

−+−

++→+

+→+

e2OOeO

e2OeO

2

MS: 70 eV

1 Brook, E., et. al., J. Phys. B, Vol. 11, 1978. 2 Krishnakumar E., et. al., Int. J. Mass. Spc. Ion. Proc., Vol. 
113, 1992.
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Radical Flux Determination

View port
Radical Source

Gas inlet

RF supply
Turbo pump

Turbo pump Main chamber
10-8 Torr

TIMS
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Determining Reflected/Desorbed Species

QCM ATIR-FTIRSample
Sample is positioned in the exact previous location of the mass 
spectrometer!
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QCM Sample

Rotational Feedthrough

Transfer Arm

Load lock

Ion source - 57º

Radical Source

Neutralizing Filament

QCM

• QCM frequency change is 
proportional to the mass change of 
the film
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Studies with QCM: Porous HSQ 
• Ar+ incident angle effect on yield with and without F atoms
• Compared porous HSQ to blanket SiO2

F atom Source
Ion Source (CVC-Commonwealth)

Rotational Feedthrough QCM: Porous HSQ
Blanket SiO2
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Studies with QCM: Ar+ Sputtering

HSQ
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• Both exhibit a peak at 60°-70°
• The yield is higher for HSQ (~ 2x)
• Consistent with literature data for SiO2

SiO2
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Studies with QCM: F and Ar+ Etching

•HSQ angle dependence flattens near 60°-70°
•SiO2 yield increases but angle dependence similar
•The yield is significantly higher (~ 3x) for HSQ
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Studies with QCM: Ar+ Sputtering after 
F atom exposure for HSQ
• After F exposure, HSQ loses the peak at ~60°
• Yield higher after F exposure, but not as high as simultaneous exposure
• Enhanced rate after F exposure persists for ~ 400 nm (film thickness)
• Suggests significant F uptake by pores throughout HSQ
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ATIR-FTIR Setup
• Detecting surface functional groups due to radical and ion fluxes

XYZ-Translator
ZnSe Window

IR light

Sample on ATIR 
crystal

Plane A
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ATIR-FTIR Setup: Plane A

FTIR Light Source IR Light Detector

ATIR Crystal

Surface modification 
from radicals and ions

Detect surface functional group changes in situ during radical and ion 
exposure by detecting light absorption differences
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Vacuum Beam System

substrate

Ion Source
ProductsRadical Source

TIMS for radical fluxes

• QCM for in situ etch/deposition rate determination

• ATIR-FTIR for in situ surface function groups

• TIMS to detect reflected and desorbed species from the surface
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Example Study:
CxFy Films Exposure to O and NH3

• O atoms play a key role during ashing to remove any CxFy
residual film on via walls

• If CxFy residual film remain after ashing, the film would be 
exposed to precursor for barrier deposition such as NH3

How do O atoms and NH3 affect residual CxFy films?

• Deposited two types of CxFy films on QCM and ATIR crystals
• Observed etch/deposition rates during O and NH3 exposure
• Observed products from the surface reactions
• Observed functional changes due to NH3 exposure
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Example Study: System Overview
Homemade plasma radical source: • CxFy radicals/stable species

• c-C4F8 and Ar
• O atoms

• O2 and Ar
• NH3

• NH3
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TIMS: CxFy Films Deposition
Deposited 2 types of CxFy films with c-C4F8 and Ar plasma

• Homemade plasma radical 
source used on the vacuum 
beam system

QCM: ~50 CF2 monolayers

• Commercial scale ICP 
chamber 3

QCM: ~150 CF2 monolayers
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ATIR-FTIR: CxFy Films
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• CxFy film from plasma radical source contains oxygen in the film
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QCM: Etch/Deposition of CxFy Films

CxFy Film Flux of O or NH3
Etch Rate 

(CF2/cm2/s)

Radical Source 4.6 × 1014 O/cm2/s 3.1 × 1012

ICP Chamber 7.0 × 1013 O/cm2/s 1.9 × 1011

Radical Source 6.7 × 1013 NH3/cm2/s 6.7 × 1011

ICP Chamber 6.7 × 1013 NH3/cm2/s -1.4 × 1011

Low reaction probability: < 1%
Deposition for NH3 for film deposited in ICP chamber
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TIMS: Product Distribution
CxFy Film from Radical Source

O Atom Exposure
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• Observe CNF products for NH3 exposure
• Observe products during NH3 exposure on CxFy from ICP Chamber

Net QCM rate is the result of NH3 deposition and product desorption
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TIMS: CF4 Signal
s C

F4

Radical Source
O Atom

ICP Chamber
O Atom

Radical Source
NH3

ICP Chamber
NH3

• CF4 signal is much large for NH3 exposure than for O exposure 

Net QCM rate observed is the difference between large NH3
deposition and large product desorption flux
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ATIR-FTIR: NH3 Exposure 
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• Large increase in -NHx signal
• Small increase in -CHx signal
• Decrease in -CFx signal

• NH3 is highly reactive on CxFy
films
• Changing the film from C:F to 
C:N:H



NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 24

Example Study:
CxFy Films Exposure to O and NH3

• O atoms react at less than 1% probability: 
• QCM detection

• NH3 is highly reactive 
• TIMS signal of CF4
• ATIR-FTIR detection of -NHx

• NH3 modifies the CxFy film into a film with C, N, and H
• TIMS product distribution
• ATIR-FTIR increased detection of -NHx and -CHx and decrease 
detection of –CFx
• QCM net mass change rate
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Concluding Remarks
Vacuum Beam System

TIMS for radical flux characterization
QCM for in situ etch/deposition rate determination
ATIR-FTIR in situ surface functional change detection
TIMS for product/reflected flux characterizaiton

• QCM study of F and Ar+ etching of porous HSQ
• F contamination in the pores

• System study of O and NH3 exposure on CxFy films

System designed to reveal fundamental radical-surface and ion-
surface interactions


