Methods and Kinetics of Copper Etching Using hfacH in Supercritical CO₂

Michael Durando & Anthony Muscat

University of Arizona Department of Chemical and Environmental Engineering ERC/SRC TeleSeminar October 6, 2005

Outline

Introduction

Definition of SCF, P-V behavior for pure fluid SCF density inhomogeneities

Supercritical carbon dioxide

scCO₂ properties & ESH scCO₂, integrated circuits, & copper

Kinetic Investigation

Experimental apparatus Sample preparation and analysis

CuO Etching using hfacH

Arrhenius Analysis Rate law for etching

Conclusion

Supercritical Fluids

phase diagram

At $T > T_c$ and $P > P_c$:

fluid has properties intermediate between those of gas and liquid

Recall reduced parameters:

 $T_r = T/T_c, P_r = P/P_c,$ $\rho = \rho/\rho_c$

Supercritical Fluids

definition of SCF

SCF \equiv T > T_c Where $\Delta P \rightarrow$ continuous $\Delta \rho$ \downarrow 'tunable' density

unique to region where $T > T_c$ & fluid has properties intermediate

between those of gas and liquid

P-V behavior of a pure fluid

compressibility

Physical Results of large κ:

- As $\kappa \uparrow$, fluid compression is easier
- Density varies strongly with changes in temperature and pressure
 - Macroscopic $\Delta \rho$ bulk
 - Microscopic $\Delta \rho$ local enhancements

Isothermal Compressibility

 $\mathbf{\kappa} = -(1/V) \left(\partial V/\partial P\right)_{\mathrm{T}}$

Compare κ at isotherms:

- $T < T_c, \kappa \rightarrow 0$
- $T > T_c, \kappa \to O(\kappa^{IG})$

• T \rightarrow T_c⁺, $\kappa \rightarrow \infty$

 κ is discontinuous at T_c

- $\kappa \rightarrow \infty$ at critical isotherm
- Theory of Critical Fluids

Fisher. *Rev. Mod. Phys*, **70**, 653, 1998. Fisher. *J. Math. Phys.*, **5**, 944, 1964.

Tucker. Chem Rev., 99, 391, 1999. 5

Macroscopic Density Variations

$$\mathbf{\kappa} = -(1/V) (\partial V/\partial P)_{\mathrm{T}} \rightarrow \infty$$

Bulk density variations:

- Compression ($\uparrow \rho$) requires little energy
- Large $\Delta \rho$ throughout entire fluid volume
- κ is large and changes rapidly with temperature as T \rightarrow T_c⁺ so: $\Delta V/\Delta T \& \Delta V/\Delta P$ very large

• Dramatically affects solvent properties and reaction rates:

- dielectric ϵ ,
- transport $\mu,\,\mathcal{D}$
- acidity, solubility

e.g., scH₂O (T_c=374 °C) at 380 °C (T_r = 1.02):
as P: 210
$$\rightarrow$$
 270 bar:
 ρ : 0.15 \rightarrow 0.54 g/mL
 ϵ : 2 (nonpolar) \rightarrow 10 (polar)

• Readily detectable as f(T, P)

Microscopic Density Variations

High $\kappa = -(1/V) (\partial V/\partial P)_T$

Variations in local density:

- Localized to small regions within the bulk fluid
- For localized compression (molecular coalescence): Entropy↓ ≈ Energetic↑
- Molecules may coalesce (disperse) in small regions of increased density → localized density augmentations (depletions)
- Affect same bulk properties
 - dielectric
 - transport
 - solvation
 - diffusion & reaction rates
- Affected by T, P, & solute concentration
- Localized density enhancement or depletions
- Pure fluids or mixtures

Configurational 2-D 'snapshot' of a pure fluid, w/ T_r =1.1, P_r = 0.86

Microscopic Density Variations

Experimental Evidence

Spectroscopic Methods:

- Solvatochromic shift: changes in UV absorption maxima of a solute due to changes in polarity or density of the solvent.
- Correlate solvatochromic shifts at known solute conc to localized density enhancements, as total density remains ~ constant.
- Shorter-range enhancements "direct"
- Centralized: extend to range of solute-solvent intermolecular potential

UV absorbance for peak shifts for DMABN in sc ethane

Partial Molar Volume Data:

• Correlate density measurements with conc. of solute at infinite dilution

 $v_2^{\infty} = (\partial \mathbf{V} / \partial n_2)_{\mathbf{T},\mathbf{P}}^{\infty}$

- Negative v_1^{∞} corresponds to positive density enhancements
- Longer-range enhancements "indirect"
- Long-range:
 - Outside of range solute-solvent intermolecular potential
 - As $T \rightarrow T_c^+$, divergent

Eckert et al. *J. Phys. Chem*, **90**, 2738, 1986. Morita et al. *J. Phys. Chem*, **94**, 6420, 1990.

Estimated partial volume as a function of compressibility as a function of reduced density

Outline

Introduction

Definition of SCF, P-V behavior for pure fluid SCF density inhomogeneities

Supercritical carbon dioxide

scCO₂ properties & ESH scCO₂, integrated circuits, & copper

Kinetic Investigation

Experimental apparatus Sample preparation and analysis

CuO Etching using hfacH

Arrhenius Analysis

Rate law for etching

Conclusion

scCO₂ Physical Properties

thermodynamic/kinematic properties

	Viscosity	Surface Tension	Density		
Solvent	(cP)	(mN/m)	(kg/m^3)	Tc (°C)	Pc (bar)
scCO2	0.03	~ 0	~ 300-800	31.1	73.8
IPA (liq)	2.86	20.9	785	235.1	47.2
water (liq)	1.0	72.0	1000	373.9	220.1
methanol (liq)	0.55	22.1	791	239.5	80.9
TCE (liq)	0.57	25.2	1462	271.1	50.2

- Gas-like mass transfer properties (diffusivity, viscosity)
- Liquid-like solvating capability (density)
- Diffusivity comparable to gases
- Low surface tension
 - nanoscale penetration
 - structure integrity

pattern maintenance vs. pattern collapse

J. Phys. Chem. Ref. Data. **1**, 841, 1972 *Ind. Eng. Chem. Res.*, **39**, 12, 2000 *Microelec. Engin.*, **65**, 145, 2003

scCO₂ Physical Properties

tunability / general

Tunability

- Control density & solvent properties with variations in pressure
 - solubility
 - viscosity
 - dielectric properties
- Explore special behavior in near-critical region
 - solubilities
 - diffusivities
 - reaction rates

General CO₂ properties

- Molecules with low vapor pressures are soluble
- Dielectric properties similar to organic solvents
- Unreactive under most conditions
- Inexpensive and reusable
- Nonflammable, nontoxic, nonaqueous

Inorganic Chemistry, **34**, 23, 1995 *Agnew. Chem. Res.*, **40**, 518, 2001 *Ann. Rev. Energy.* **8**, 275-306, 2001

scCO₂ ESH

• Health

- accumulates in confined areas because it is heavier than air, work space must be wellventilated
- may cause asphyxiation at concentrations > 5%
- large quantities of CO₂ compressed into small volumes
 - 1 liter scCO₂ at 3000 psi and 50 °C generates roughly 440 liters gas in atmosphere conditions
- Safety
 - pressure hazards:
 - champagne bottle ≈ 6 bar
 - $scCO_2 \ge 74$ bar
 - special equipment (seals, pumps, fittings, valves, etc.):
 - must be rated to accommodate high pressures
 - must be inert to dissolution capabilities of scCO₂
 - must have safety pressure release mechanisms
 - liquid CO₂ is stored on-site in pressurized cylinders (~60 atm)
- Environment
 - CO₂ is a green house gas
 - high-volume manufacturing should recycle CO₂ streams
 - 82% of commercially used CO_2 is a by-product from other industries
 - Additives must be separated from CO₂ streams
 - CO₂ must be transported onsite in trucks

scCO₂ Applications

industrial applications

• Food processing:

- Non-toxicity of solvent
- Extraction of caffeine, oils, cholesterol, and spices Food Chem, **52**, 345, 1995, Chem. Ind., **21**, 831, 1996, J. Supercrit. Fluids **9**, 3, 1996.

• Pharmaceutical synthesis/separation:

- Low T_c amenable to processing biomolecules
- Particle size control
 - J. Pharm. Sci., 86, 8, 1997^a, Int. J. Pharm., 292, 1, 2005.
- Polymer and particle design:
 - Ease of separation through depressurization
 - Particle size control
 - Inertness of solvent

J. Mat. Sci., **10**, 207, 2000, *Chem. Rev.*, **99**, 543, 1999, *J. Mat. Chem.* **10**, 207, 2000^b.

^b Porous polyurethane foam formed in scCO₂

scCO₂ Applications

integrated circuit fabrication - water & energy

- 200 mm wafer production:
 - A fab producing 40,000 200 mm wafers/month consumes \sim 2-3 million total gallons water/day^a
 - One 8-inch wafer requires ~ 250 gallons UPW^b
- 300 mm wafer production: ^c
 - One 300 mm wafer requires \sim 53 L UPW in wet-bench processing
 - Requires 5-7 L UPW/cm² of Si $\rightarrow \sim$ 900-1200 total gal UPW/wafer
- 1 cm² of fabricated wafer: ^d
 - Requires:
 - 20 L water
 - 45 g chemicals
 - 1.5 kWh/cm² electricity
 - 1 MJ/cm² fossil fuels

Produces:

- 17 kg wastewater
- 7.8 kg solid waste

a. Semicond. Intern. 21, 2, 71, 1998
b. Electrochem. Soc. Proc. 99, 193, 1999.
c. Semicond. Intern. 27, 4, 55, 2004
d. Environ. Sci. Technol., 36, 5504, 2002

• Intel uses 112 million gal of fresh water each week for all manufacturing operations worldwide.^e

• *The New York Times* requires over 200 million gal of water/week to print the Sunday edition.^e

scCO₂ Applications

semiconductor industry processes

Photoresist development – U. of Cornell/MIT

Chem. Mater., 15, 4893, 2003, Chem. Vap, Dep. 7, 195, 2001.

- Photoresist drying U. of Wisconsin/IBM JVST B, 18, 3313, 2000.
- Spin coating U. of North Carolina *Ind. Eng. Chem. Res.*, **43**, 2113, 2004.
- Metal and low-*k* film deposition U. of Mass Amherst, U of Idaho Chem. Mater., **15**, 83, 2003., Chem. Mater. **16**, 2028, 2004, Science, **294**, 141, 2001, Science, **303**, 507, 2004.
- Low-k film damage repair U. N. Texas/TI, U. of Missouri/TEL/SSI, U. of Arizona J. Vac. Sci. Technol. B, 22, 1210, 2004.
- Low-k film pore capping U. of N. Texas/TI, U. of Arizona Microelec. Engin., 80, 17, 349, 2005.
- SiGe surface preparation U. of Arizona Mat. Sci. Semi. Proc., 8, 1-3, 231, 2005.
- Cu etching U. of North Carolina, U. of Arizona

J. Am. Chem. Soc. 125, 4980, 2003, Chem. Mat., 17, 1753, 2005

scCO₂ & Integrated Circuits

copper etching using scCO₂

Copper Etching in scCO₂ has been demonstrated

Etchant Solutions for the Removal of Cu(0) in a Supercritical CO2-Based "Dry" Chemical Mechanical Planarization Process for Device Fabrication

"Both liquid and supercritical (sc) CO₂ have significant potential for replacing current aqueous and organic CMP solvents."

- JACS, 125, 4980, 2003

Removal of Copper from Silicon Surfaces Using Hexafluoroacetylacetone (hfacH) Dissolved in Supercritical Carbon Dioxide

"... scCO₂ processing is industrially viable for cleaning Cu from surfaces and perhaps for etching Cu."

- Chem. Mat., 17, 1753, 2005

Copper etching in scCO₂

project significance

Chem Mat., 17, 1753, 2005

- I. Demonstrate viability of copper etching/removal in scCO₂.
- II. Characterize the kinetics and mechanism of a surface reaction for the first time in a supercritical fluid.

Outline

Introduction

Definition of SCF, P-V behavior for pure fluid SCF density inhomogeneities

Supercritical carbon dioxide

scCO₂ properties & ESH scCO₂, integrated circuits, & copper

Kinetic Investigation

Experimental apparatus Sample preparation and analysis

CuO Etching using hfacH

Arrhenius Analysis

Rate law for etching

Conclusion

experimental apparatus

$$r_{(hfac)H} = \frac{-dc_{(hfac)H}}{dt} = Ae^{\frac{-E_{act}}{RT}}c_{(hfac)H}^{\alpha}$$

Parameters:

- $E_{act} = Activation energy$
- α = Reaction order
- A = Pre-exponential factor

Precision Requirements:

- Temperature
- Pressure
- Concentration/purity/mixing
- Exposure time

Three loops: mixing, injection, sample exposure

experimental apparatus

Specifications:

- Total Volume $\approx 246 \text{ mL}$
- $\sim 90\%$ volume within oven
- Max $P \approx 300$ bar (4000 psi)
- Online P & T control

Precision achieved:

- Temperature (+/- 0.2 °C)
- Pressure (+/- 0.5 bar)
- Concentration/purity/mixing (~3 mL N₂)
- Exposure time
 - (~1 min to s.s., 30 sec to vent)

Example of temperature and pressure recordings for the duration of an extended experiment in $scCO_2$.

SEM analysis

500 Å CuO on 2000Å Cu metal

XPS analysis - spectra

Cu metal

500 Å CuO on Cu metal

XPS and SEM indicate presence or absence of superficial CuO ²⁴

Outline

Introduction

Definition of SCF, P-V behavior for pure fluid SCF density inhomogeneities

Supercritical carbon dioxide

scCO₂ properties & ESH scCO₂, integrated circuits, & copper

Kinetic Investigation

Experimental apparatus Sample preparation and analysis

CuO Etching using hfacH

Arrhenius Analysis Rate law for etching

Conclusion

XPS analysis - etching rates

Complete removal of CuO

- Samples of characterized CuO thickness
- At one temperature, find time to remove CuO
- Repeat for different temperatures at same concentration

-
$$\Delta$$
(moles CuO)/ Δ t = etching rate

$$\frac{dCu(hfac)_2}{dt} = A_{app} e^{\frac{-E_{app}}{RT}} c_{CuO} c_{hfacH}^2$$

Experimental Results

XPS analysis - CuO removal

At 60° C (+/-0.2°) & 180 bar, 1000 ppm hfacH:

etching rate = 7.21x10⁻⁹ mol/min

Experimental Results

SEM images - CuO removal

Arrhenius analysis

Data taken at 185 (±0.5 bar) & 164 ppm hfacH:				
	Etching Rate			
Temperature (°C) (+/-0.15°)	(Å/min)	(mol/min)		
53.5° C	1.6	2.35x10 ⁻⁹		
60.8º C	3.0	4.28x10 ⁻⁹		
68.0° C	5.4	7.76x10 ⁻⁹		
74.8º C	7.8	1.13x10 ⁻⁸		
82.4º C	13.9	2.00x10 ⁻⁸		
88.4º C	20.1	2.88x10 ⁻⁸		

Literature reported data for CuO etching using hfacH in gas phase.

Chemistry	Phase / Temp. (° C)	Etching rate (Å/min)
0.25 Torr (hfac)H + 50 Torr O ₂	Gas / 250	100 ^a
4 Torr (hfac)H + 50 Torr O ₂	Gas / 250	1000 ^a
0.04 Torr (hfac)H + 0.86 Torr O_2	Gas / 125	190 ^b

a. Thin Sol. Films, **342**, 221, 1999 b. J. Vac. Sci. Tech. B, **17**, 154, 1999

Arrhenius plot for CuO etching using 164 ppm hfacH dissolved in $scCO_2$ at 185 +/- 0.5 bar in temperature range 53.5-88.4 °C (+/- 0.25 C).

Plot of etching rate of CuO vs. concentration over an hfacH concentration range 16-328 ppm hfacH in scCO₂ at 74.8 °C and 82.4 °C 185 (+/- 0.5) bar.

summary of results

Reaction Videl	Temperatur	re (°C) (+/-0.15°)	
0.61	74.8		
Activation Energy	(164 ppm hfacH, 53.5-88.4	°C) dCu(hfa	$(C)_2$ $\frac{-E_{app}}{pT}$
70.2 kJ/mol		$\frac{r_{Cu(hfac)_2}}{dt} = \frac{r_{Cu(hfac)_2}}{dt}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Highest Etching Ra	te (82.4 ° C, 185 bar, 328	B ppm hfacH)	
Highest Etching Ra 27.0 Å/min	te (82.4 ° C, 185 bar, 328	3 ppm hfacH)	
Highest Etching Ra 27.0 Å/min	te (82.4 º C, 185 bar, 328	3 ppm hfacH)	
Highest Etching Ra 27.0 Å/min Chemistry	te (82.4 ° C, 185 bar, 328 Phase / Temp. (° C)	B ppm hfacH) Etching rate (Å/min)	E _{act} (kJ/mol)
Highest Etching Ra 27.0 Å/min Chemistry 0.25 Torr (hfac)H + 50 Torr O ₂	te (82.4 ° C, 185 bar, 328 Phase / Temp. (° C) Gas / 250	B ppm hfacH) Etching rate (Å/min) 100	E _{act} (kJ/mol) 54.4 ª
Highest Etching Ra 27.0 Å/min Chemistry 0.25 Torr (hfac)H + 50 Torr O ₂ 4 Torr (hfac)H + 50 Torr O ₂	te (82.4 ° C, 185 bar, 328 Phase / Temp. (° C) Gas / 250 Gas / 250	B ppm hfacH) Etching rate (Å/min) 100 1000	E_{act} (kJ/mol) 54.4 ^a 33.4 ^a

Estimated Etching Rates (185 bar, 164 ppm hfacH)	Temperature (°C)
42.0 Å/min	100
174.0 Å/min	125
609.0 Å/min	150

Experimental Results

future work

Concentration variation

- + 1000 ppm $\sim 3~\mu mol~hfacH/L$
 - ~ 700,000 monolayers (hfac)H
 - (hfac)H soluble up to 30,000 ppm
- reaction order for (hfac)H at more temperatures

Additives/catalysts

- acid catalysts
- in situ oxidants
- reaction inhibitors
- different chelators

Explore near-critical region

- density inhomogeneities
- variation in solvent properties

minimum energy conformation with C=O facing Cu metal^{a,b}, estimated molecular area $\sim 17 \text{ Å}^2$

$$r_{Cu(hfac)_2} = \frac{dCu(hfac)_2}{dt} = A_{app} e^{\frac{-E_{app}}{RT}} c_{CuO} c_{hfacH}^{\alpha}$$

a. JACS., **93**, 1148, 1971 **33** *b. Surf. Sci.*, **409**, 428, 1998

Experimental Results

future work - mechanism/rate

$$r_{cu(hfac)_{2}} = \frac{dCu(hfac)_{2}}{dt} = A_{app}e^{\frac{-E_{app}}{RT}}c_{cu0}c_{hfacH}^{\alpha}$$

$$Cu0 + hfacH \quad \stackrel{k_{1}}{\longleftrightarrow} \quad Cu-hfac + *OH$$

$$Cu-hfac + hfacH + *OH \quad \stackrel{k_{2}}{\longrightarrow} \quad Cu(hfacH)_{2} + HOH$$

$$r_{etching} = k_{2} \quad \frac{k_{1}}{k_{-1}}[C \ u \ O \][h \ fa \ c \ H \]^{2}$$

$$r_{etching} = A ' e^{\frac{-E_{app}}{RT}}c_{(hfac)H}^{\alpha}$$

For CuO etching reaction:

- Fully develop rate equation
- Elucidate mechanism
- Explore energy barriers or individual steps

Outline

Introduction

Definition of SCF, P-V behavior for pure fluid SCF density inhomogeneities

Supercritical carbon dioxide

scCO₂ properties & ESH scCO₂, integrated circuits, & copper

Kinetic Investigation

Experimental apparatus Sample preparation and analysis

CuO Etching using hfacH

Arrhenius Analysis

Rate law for etching

Conclusion

Conclusion

supercritical fluids and copper etching in scCO₂

Supercritical fluids:

- SCF \equiv T > T_c, where $\Delta P \rightarrow$ continuous $\Delta \rho$
- Divergent compressibility as $T \rightarrow T_c^+$ leads to microscopic and macroscopic density inhomogeneities that affect fluid properties

Copper etching in supercritical carbon dioxide

- scCO₂ as a solvent
 - favorable critical parameters
 - negligible surface tension
 - tunable properties
- Custom-built apparatus allows for precise P & T control
- $E_{Act} = 70.2 \text{ kJ/mol}$
- Reaction order: 0.61 at 74.8 ° C
- Etching rates: 5-27 Å/min at T < 100 $^{\circ}$ C

Acknowledgements

NSF/SRC ERC Gerardo Montaño-Miranda Dr. James Farrell Dr. Roberto Guzman