

Air Dielectric: CVD Sacrificial Materials (Task 425.001: ERC EBSM)

Kelvin Chan* and Karen K. Gleason Department of Chemical Engineering Massachusetts Institute of Technology

*defended PhD Aug 2005, joining Applied Materials

Plii

- Air has the lowest possible dielectric constant of 1.0
 reduced RC delay
 - □ lower power consumption
 - Iower cross-talk noise
- Air has the lowest possible refractive index of 1.0
 - high index contrast in optical devices (e.g. thin-film optical filters)

Future Microprocessor Interconnect Technology Requirements*

*Source: International Technology Roadmap for Semiconductors 2001

Sacrificial Material

Frequent Use of Sacrificial Materials in <u>MEMS Fabrication</u> Surface micromachining

 Use of Sacrificial Materials (or Porogens) for Low-Dielectric-Constant Integration
 Air has the lowest k of 1.0 (reduce RC delay, power, noise)

Complete or Partial Air Gaps as Inter-Metal Dielectric

Air-Gap Fabrication

- Ordinary Sacrificial Materials
 - Require physical contact with etchant/solvent for selective removal
 - Surface-tension problems for wet processes

Self-Decomposing Sacrificial Materials

- Requires no agent for removal
- Dry removal process (heat, UV, e-beam)
- Allow fabrication of closedcavity structures

- Polymer films synthesized in situ from their monomeric building blocks and involves no solvents in one step without curing
 - polymers need not be soluble
 - excellent thickness control
 - nanoscale thicknesses with macroscale uniformity
 - no surface tension and non-uniform wetting effects (complex geometries, 3D, soluble substrates)
 - no residual solvent

Energy Input for Polymer CVD

Plasma Enhanced

- nonselective chemistry: char formation
- nonlinear polymers
- dangling bond defects

Hot Filament

- selective thermal scission of bonds
- side-group retention
- linear polymers
- no dangling bonds or associated aging effects
- systematic control over composition using feed gas

iCVD of Poly(glycidyl methacrylate) (PGMA)
 Mao Y; Gleason KK *Langmuir* 2004, 20, 2484
 produced straight-chain, high-molecular-weight PGMA

Pliī

Transition From Wet to Dry

solution free-radical polym.	iCVD
	Exhaust
Batch process	Continuous process
Single reaction medium	Two reaction media
	- gas phase
Single temperature	Multiple Temperatures - gas - filament - surface
All reactions occur at same temperature in one phase	Radical generation, initiation, propagation, and termination may occur in different phases
Concentrations of species depend on initial doses	Concentrations in gas phase depend on flow rates and total pressure
	Concentrations on surface depend on adsorption equilibria, kinetics

Elements of Analyses

A Mechanistic Study of iCVD: Analyses of Deposition Rate and Molecular Weight

Surface Propagation Hypothesis

Radical generation (gas phase/filament) $I_2 \rightarrow 2 I$.

 $\frac{\text{Initiation}}{\text{I} \cdot + \text{M} \rightarrow \text{IM} \cdot}$

 $\frac{\text{Propagation}}{\text{IM}_{n} \cdot + \text{M} \rightarrow \text{IM}_{n+1}}$

- Gas-phase concentration low
 bimolecular reactions unlikely
- Volatility of dimer low
 gas-phase propagation unlikely

 $\begin{array}{l} \underline{\text{Termination}}\\ IM_{n}\cdot + IM_{p}\cdot \rightarrow & IM_{n+p}I\\ IM_{n}\cdot + IM_{p}\cdot \rightarrow & IM_{n} + IM_{p} \end{array}$

Surface concentration high
 low vapor pressure monomer

- Formulate model to predict rate of polymerization (R_p) and number-average molecular weight (M_n) based on surface propagation
- Experimentally measure R_p, M_n, and surface concentration ([M])
 - □ R_p = thickness per time
 - \square measure M_n by gel-permeation chromatography (GPC)
 - measure [M] by quartz-crystal microbalance (QCM)
- Manipulate [M] by changing surface temperature
 gas, filament temperatures unaffected
 gas-phase concentrations remain constant

IIII The Formulation for Surface Propagation

Ilii Deposition Rate vs. Surface Concentration

IIIiMolecular Weight vs. Surface Concentration

Mechanistic Study Conclusions

- Chain propagation occurs predominantly on surface
 molecular weight increases with eq. surface concentration
 deposition rate increases with eq. surface concentration
 - free-radical polymerization with adsorbed monomer initiated by incoming free radicals
- Surface concentration is at equilibrium during iCVD
 monomer adsorption is not rate limiting
- Guideline for new monomers

 high surface concentration
 high k_p²/k_t

$$\nu = \left(\frac{k_p^2 R T_{\infty}}{2k_t k_c p_{I,\infty}}\right)^{0.5}$$

Air-Gap Fabrication using a Sacrificial Polymeric Thin Film Synthesized via iCVD

Heat-Depolymerizing Polymers mechanical and thermal stability decompose completely without residue

Integration Issues polymer dissolves in solvents polymer etches slowly

iCVD

- to create as-deposited, cross-linked polymer that decomposes cleanly without leaving behind residue
 - insolubility
 - increased thermal stability
 - increased mechanical strength

IIII Self-Decomposing Sacrificial Materials

Criteria for Success

- □ High deposition rate
- □ Good adhesion to substrate
- Good adhesion to resist
- Non-dissolving and nonswelling in solvents
- □ High etch rate
- Onset of decomposition temperature > 200 °C
- □ Minimal amount of residue

- Bulk Organic Polymers
 - Poly(methyl methacrylate)
 - Polystyrene
 - **□** Poly(α-methylstyrene)
 - Polyoxymethylene

Integration Issues

- Polymer dissolves in solvents
- Thin-film deposition difficult to achieve
 - PECVD unsuitable for the application
 - crystallization during spin-on deposition

Initiated CVD (iCVD)

- □low energy input
- □low-temperature process
- □no ion bombardment or UV irradiation
- selective polymerization with functionality retention

IIIii Monomers and Cross-linking Agent

FTIR of crosslinked copolymer

Cross-link Density (FTIR & XPS)

two independent methods confirm systematic control of crosslink incorporation in the film

Plii

Film Properties

- Does not dissolve in any commonly used solvents
- Decomposition > 99.7% by thickness (VASE)
- Onset temperature of decomp. ~ 270 °C (ITS)
- Good adhesion to substrate and photoresist
- High etch rate in oxygen RIE (0.35 µm/min)

The Fabrication

The Resulting Structure

Plii

PCHMA iCVD Conclusions

- Cross-linked PCHMA made in situ on the surface of a substrate in one step by iCVD without using any solvents. Not possible to spin cast this insoluble material.
- Networked polymer completely decomposes cleanly
 - □ maximum of 0.3% residue
 - □ crosslinking via the dimethacrylate monomer is key
 - □ degree of crosslinking can be systematically adjusted
- Cross-linking renders the polymer stable in practically all solvents: photoresist can be removed by dissolution instead of ashing.
- The high etch rate (0.35 µm/min) in oxygen reactive-ion etching in addition to the stability in solvents eliminates the need of a hard mask during etching. Eliminating the hard mask represents an improvement over previouslyreported spin-on sacrificial materials.
- The onset of thermal decomposition is 270 °C, meaning that the polymer can survive other high-temperature processing steps.
- Fabrication using conventional lithographic, etching, and deposition techniques resulted in void structures having feature sizes of a minimum of 1.5 µm. With better lithography, smaller feature sizes can be fabricated.

- SRC International Fellowship
- NSF/SRC ERC for EBSM
- MRSEC Shared Facilities
- Kurt Broderick, MT