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Presentation Outline

• Sources and effects of molecular contamination

• Research objectives
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- Adsorption loading and transport of gases through low-k materials

- Modeling and simulation of desorption

- Effect of porosity and film thickness on outgassing rate       

• Conclusions
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Sources and Effects of Molecular 
Contamination

Moisture (H2O) Organics from
Chemicals and Personnel
Paints and Filters
Wafer Boxes and Equipment

Isopropanol (IPA)
Butylated Hydroxy toluene (BHT)

Dioctylpthalate (DOP)
Amines

• Resist and via Poisoning

• Etch rate shifts due to incomplete wetting

• Wafer and optics hazing

• Counter-doping

• Delamination, non-uniform Cu-seed deposition

• Malfunction of epitaxial growth

• Photolithography Acknowledgment: Dr. Prashant Raghu
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Low-k Materials
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• Faster clock speeds and lower power consumption
• Reduce RC delay, power dissipation, crosstalk noise and number of metal              

level

• Number of options

Materials Application k value

SiO2 CVD 3.9 - 4.5

FSG CVD 3.2 - 4.0

Black DiamondTM

(SiCOH)
CVD 2.7 – 3.3

p-MSQ Spin-on 1.8 - 2.2

Porous SiLK Spin-on 1.5 - 2.0

1

1. Introducing Low-k Dielectrics into Semiconductor Processing, Michael E. Clarke. Mykrolis



Contamination Behavior of Low-k Materials

• Low-k inter-layer dielectrics (ILD) are highly prone to molecular 
contamination, especially if it porous

• Potential issues associated with molecular contamination of low-k materials:

- Their ability to absorb chemicals, such as contaminants containing 
polar O-H bonds due to their porous structure 

- Increase in k values
- Signal propagation delays and cross-talk between interconnects

• Characterization of sorption behavior of new low-k films will assist in deciding 
their potential for successful integration in semiconductor processes
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Method of Approach

Identification of molecular contaminants

Adsorption characteristics

Adsorption loading

Transport/Kinetics

Mechanism of interaction

Variables
Temperature
Concentration
Film Physical 

Properties

Effect on Inter-layer dielectric 
quality
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Model Contaminants

Moisture

H2O

Used as solvent, drying agent

Mol.Wt : 60.10

B.P : 83 0C

µ = 1.7 D

Ubiquitous impurity

µ = 1.8 D

Isopropanol (IPA)

H3C CH3

CH

OH
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Research Objectives

• Study molecular contamination of low-k materials like p-MSQ and compare 
them with SiO2

• Adsorption loading 

• Transport, Incorporation and removal of moisture in all forms in the 
matrix

• Mechanism of interactions of moisture and organics with wafer 
surfaces

• Develop fundamental model based on adsorption/desorption mechanism to 
simulate adsorption loading and surface concentration profiles
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Experimental Setup

Zero gas line

Reactor

MFC 5

Sample gas line B

APIMS

Direct Injection System

Sample gas line A

MFC1
MFC 2

Gas Purifiers

Moisture 
Permeation 
Device

Temperature 
Controller

Gas Purifiers

UHP N2 Main 
Supply

MFC 3MFC 4

Purified nitrogen to direct injection system

N2 Main 
Supply

MFC 6

• All metal MFCs
• Heated 316L EPSS tubing 
• No dead volumes
• Research grade gases
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Atmospheric Pressure Ionization Mass Spectrometry

Ionization Separation Detection

Anode

First 
dynode

Faraday cup

Ion beam

Φ( ) cos( )t U V ft= − 2π

•Ionization by electron 
impact

• Atmospheric

•High rate of ionization

•High sensitivity (ppt levels)

•Separation in quadruploe

•Based on m/e ratio

•3 quadruploes enable 
analysis of peaks with 
overlapping m/e

•Electron multiplication by 
secondary electron emission
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Sample Preparation
Test samples for this study was porous methylsilsesquioxane (MSQ) 
low-k dielectrics (JSR 5109) with 

Dielectric constant 2.2-2.3 

Porosity ~ 48%, 

Pore diameter ~ 3.4 nm

The Low-k wafers3 were processed as follows:

• 5500 Å Thermal Oxidation (Wet Oxidation)

• 3500 Å LPCVD Nitride (Thermal Nitride – both sides of wafer)

• 4000 Å Blanket JSR 5109

• Standard JSR Cure

• Partial etch 

• Partial ash

3. Wafers provided by Sematech
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Experimental Reactor

Wafer coupons 
loaded on springs

Pyrex reactor

• Wafers diced into 1 cm x 2 cm coupons

• Coupons loaded on nickel coated steel springs and densely packed into a Pyrex® glass reactor

• Random orientation and reactor geometry results in adequate gas mixing, allow this reactor to 
be treated as a differential reactor

• High wafer to glass surface area ratio

zzd 12
Department of Chemical and Environmental Engineering, University of Arizona



Experimental Procedure
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Experimental procedure

Adsorption at 30oC

Desorption at 30oC

Bake-out at 100, 200 & 
300oC

Temporal profile of adsorption (challenge 110 ppb 
moisture), followed  by temperature-programmed 

desorption as measured by mass spectrometer
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Moisture Adsorption Loading

SiO2

∆ Electronegativity       1.7        

-OH site density           4.6 x 1014

(#/cm2)

Temperature (oC)
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Cgbo = challenge moisture concentration

Cgpo = equilibrium moisture conc in the 
pore

Cso = equilibrium moisture conc in the 
matrix

Cfilmo = total moisture loading in 
molecules per unit volume of the film

ε = porosity, S = Solubility

)1(000 εε −+= sgpfilm CCC
SCC gbs *00 =

Gas-phase H2O conc.: 56 ppb

• p-MSQ have much higher 
adsorption loading than SiO2
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Moisture Retention after Isothermal N2 Purge
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Gas-phase H2O conc.: 56 ppb

Purge Time : 10 hrs

• 45-50 % of adsorbed moisture removed from SiO2 during isothermal N2 purge

• Around 15-25 % of absorbed moisture removed from p-MSQ
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Simulation of Adsorption/Desorption Profiles

Study mechanism and interaction

Develop process model 

Experimental validation of model

Parameter Estimation

Applications: 

- Simulate concentration profiles and adsorption loading

- Effect of porosity and film thickness

- Optimization of process conditions  
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Schematic of Moisture Transport and Interactions

Gas flow

Cs (chemisorbed 
moisture)

p-MSQ filmSilicon Nitride

Cgp

Cs

km

Cgb

Cgp

km

kmg kms

z = 0

Transport and Interaction pathways:

• Transport in solid matrix by permeation (dissolution and diffusion)
• Transport in pore following micro pore diffusion
• Exchange between matrix and pores 
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Development of Desorption Model

z = L

Silicon Nitride

z = 0

p-MSQ film

Governing Equation for transport of moisture in porous matrix is:
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Governing Equation for transport of moisture in pore is given by:

The initial and boundary conditions are:

I.C: Cgp = Cgb0 ,              at  t = 0 

0=
∂

∂
z

C gp at  z = 0
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Validation of Model
30 oC experimental data on p-MSQ
30 oC Model fit

150 oC experimental data on p-MSQ
150 oC Model fit
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Estimated Parameters

Parameters Units 30 oC 150 oC 250 oC
Ds cm2/s 1.4e-15 1.7e-15 3.5e-15
Dg cm2/s 8.5e-10 1.0e-9 3.0e-9
S 3.65e7 1.9e7 1.0e7
km cm/s 5.0e-13 5.0e-13 5.0e-13
kms cm/s 1.0e-8 1.0e-8 1.0e-8
kmg cm/s 1.0e-7 1.0e-7 1.0e-7

• Diffusion in matrix is primarily through molecular or intra-lattice cavities

• Transport through pores is micro pore diffusion 

• Exchange coefficients km, kms and kmg are weak functions of temperature and are constant 
for all cases
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Solubility of moisture in p-MSQ
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• S values are in good agreement with the values of S determined by fitting the model to 
desorption data 

• Slight dependence of S on moisture concentration 
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Loading Comparison
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• The total amount of moisture adsorbed for 
a particular concentration decreases with 
increasing temperature

• At a constant temperature the total 
moisture loading increases with increase in 
the challenge concentration
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Percentage clean up
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• After one hour of desorption; only around 5% of the total moisture is removed.  Even after 
20 hrs, ~75% of total moisture remains in the dielectric film.

• Very slow and highly activated overall removal of moisture could be a significant problem 
in the integration of such porous dielectric films in semiconductor processing
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Effect of porosity on outgassing rate
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• Two competing factors: film loading and mass transport rate

• The total amount of moisture adsorbed in the film decreases with increase in porosity 

• The overall mass transfer between the film and bulk gas depends on the mass transfer 
between the pore and bulk gas; porosity increase leads to an increase in the mass transport 
by pores
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Effect of thickness on outgassing rate
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• The thickness affects both the film mass and the overall diffusional resistance . 

• Decrease in diffusional resistance increases the outgassing rate 

• Decrease in total amount of moisture adsorbed decreases the outgassing rate 
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Practical Applications of Model

Model describes actual processes and explains experimental results

It is a practical tool for 

- estimation of surface contamination and 

- optimization of process conditions to minimize effects of molecular         
contamination

- valuable tool for designing a desorption recipes (temperature, gas flow, and 
gas  purity) to assure effective and efficient clean up of the dielectric films 
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Conclusions

• Moisture adsorption and desorption rates in p-MSQ are sensitive to temperature, moisture 
concentration as well as the film thickness, moisture solubility and the fundamental 
properties of moisture transport in the dielectric materials, in the pores and across the solid 
gas interphase. 

• Moisture incorporation in MSQ matrix involves many intermediates (a wide spectrum of 
physical and chemical interactions).

• A process model is developed to elucidate the interactions of moisture with porous films. 

• The results show that interphase transport and the pore diffusion coefficients are much 
smaller that those predicted by bulk or Knudsen diffusion mechanism.

• Diffusion through matrix is very slow and activated process

• The low outgassing rates also indicate that porous films such as p-MSQ are highly 
susceptible to moisture contamination 
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Future Work 

• Development of models to simulate competitive adsorption / 
desorption profiles of multiple molecular contaminants

• Adsorption of molecular contaminants on other low-k 
materials.
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Nomenclature

Atot = total exposed surface area available for moisture to adsorb
Cgb = concentration of moisture in surrounding medium
Cgb,in = concentration of moisture in inlet gas stream
Cgp = concentration of moisture in voids
Cs = concentration of moisture in matrix 
Ds = diffusivity of moisture in the matrix
Dg = gas phase diffusivity of moisture in pores 
km = mass transfer coefficient between matrix and voids
kms = mass transfer coefficient between matrix and gas phase in the       

surrounding medium
kmg = mass transfer coefficient between pores and gas phase in the 

surrounding medium
L    = thickness of the film
Q   = volumetric flow rate
S   = solubility of moisture in the film
Sp = specific surface area of the porous film
V   = volume of the reactor
ε = Film porosity 
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