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Outline

• Challenges of next generation lithography
• Supercritical carbon dioxide

– Properties
– Solubility

• Development of polymeric photoresists
– Resist fluorination
– Fluid additives

• Molecular glass photoresists
– Inherent solubility
– Sub-65nm resolution
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Supercritical CO2 in Industry
• Extraction of essential oils from organic matter

– Cinnamon, ginger, sandalwood, etc
– Pharmaceutical applications

• Decaffeination of coffee
– CO2 replaced CH2Cl2 as solvent, removed only caffeine

• Dry Cleaning
– Addition of surfactants

• Wafer cleaning
– BOC Edwards DFP-200
– Critical Point Dryer
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Next Generation Lithography:  Key Problems
Pattern Variations
< 3nm for 32nm node

Pattern Collapse
Reduce surface tension
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T. Tanaka, M. Morigami, N. Atoda, 
JJAP, 32(pt1, 12B) 6059 (1993).

@ 50nm L/S, aspect ratios 
>2:1 collapse w/water

Non-polar Materials
Low-κ applications

Lack of appropriate 
non-polar developers 

Must use mulitple 
subtractive steps
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Advantages of Supercritical CO2 Development

Elimination of organic 
solvents and ultra-pure 
water during processing

2 gram DRAM chip 
32 kg of water

Liquid-like density, 
Tunable Solvating 

Power

Harmful solvents are 
cleanly separated via 

depressurization

Gas-like transport

No surface tension, 
eliminates pattern 

collapse

Williams, et al., Environ. Sci. Tech., 36, 
5504, (2002).

Penetrates crevices,     
no residue
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Supercritical CO2 and Solubility

• Solvating power is related to fluid density – tunable 
solvent strength
– Selective dissolution
– Solutes can easily be separated

Properties that affect solubility:
–Stiffness (entropy)
–Molecular weight (size)
–Existence of electron-dense groups (enthalpy)

•Acrylate groups, aromatics
•Fluorine substituted moieties
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Supercritical CO2 and Solubility
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Fluorinated scCO2 Soluble Photoresists
• First platform for soluble polymeric photoresists

– Copolymerize traditional photoresist monomers with fluorinated 
monomers

• Negative tone

• Block copolymer (Cornell) and random copolymer (UNC) 
versions demonstrated.
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N. Sundararajan, S Yang, K Oglno, S Vallyaveettfl, J Wang, X Zhou, C. K. Ober, S. K. Obendorf, and R. D. Allen, Chem. Mater. 12, 41 (2000).
D. Flowers, E N Hogan, R Carbonell, mad J. M. DeSlmone, in Proceedings of SPIE, 4690, 419 (2002).

Sundararajan, et al.  193 nm exposure.
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Positive Tone Resists for scCO2 Development

Two-step positive-tone
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Intrinsic positive-tone!
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Resist Fluorination

• Advantages
– High transparency at 193 nm, 157 nm exposure wavelengths

• Library of fluorinated monomers

– Simple to increase scCO2 solubility with monomer inclusion

• Disadvantages
– Low plasma etch resistance of F-containing structures
– Surface compatibility:  low surface energy
– Low glass transition temperatures (Tg)

• Difficult to keep sharp pattern shape
• Low contrast



SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing Ober Group
11

Reduce Fluorination

Perfluorinated octyl compounds have been shown to 
bioaccumulate and disrupt cellular functions

Environmentally friendly? reduce need for fluorination

Giesy J P; Kannan K,  Environ. Sci. & Tech.  (2001),  35(7),  1339-42
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Reducing Fluorination:  Using Cosolvents

• 1vol% ethanol….very little effect
• 2vol% ethanol….100% removal

45% FAA, M n<20k , 5000  ps i
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•Increase solvent density 
•Tune polarity of fluid
•Specific interaction with a comonomer

~2 vol% acetone
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Mao, Yu; Felix, N. et al., JVST B., 22(5), 2004, 2473-8.
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Additives for Processing Conventional Resists
• Patent literature full of examples of surfactant libraries used for 

scCO2 dissolution of photoresists
– Fluorinated or hydrocarbon tails
– Polar or carboxylate heads
– Mostly seen for pattern cleaning/drying

• Recent work by Micell Technologies on reactive ionic additives 
to impart scCO2 solubility to conventional photoresists
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‘CO2 Compatible Salts’
• Rather than ionic surfactants, reactive fluorinated salts added to 

solution
– Interact with weak acidic groups of photoresist to impart solubility
– Due to lower amounts of acidic groups, unexposed regions gain sufficient 

solubility first
– Presence of generated acid in exposed regions inhibits reaction with 

photoresist

N

R2

R4

R3R1 X

R: fluorinated alkyl or aryl group
X:  halide or carboxylate group

Aqueous TMAH develop

CO2/CCS develop

Wagner, M., DeYoung, J., and C. Harbinson, SPIE v 6153 I 2006, p 61531.

DeYoung, J., et al., SPIE v 6153 I 2006, p 615345.
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Inherent scCO2 Solubility w/o Fluorine

• Molecular Glass Resists
– Due to their small size, molecular glass resists of all types 

have potential for CO2 solubility…no fluorine needed!
• Nonpolar molecules with aromatic rings are most soluble
• Crosslinking chemistries offer better contrasts, processing windows
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Molecular Glass Photoresists

• Small molecule size ~1-2nm

• Well defined molecular structures
– No distribution of mass

• Low tendency towards 
crystallization
– bulky irregular shape or different 

conformation states

• Strong intermolecular attractive 
forces for high Tg
– Specific interactions such as H-

bonding

• Better miscibility of resist 
components
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High Resolution MG Resist for Supercritical CO2
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Solubility Switching
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Dissolution Rate Measurments
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Molecular Glass Resist Solubility

• Wide range of resist cores can be used
• Balance between size and polar functionality

Recent example

H. Shiraishi, J. Yamamoto, T. Sakamizu, J. Photopolym. Sci. 
Technol. 19(3) (2006), 367-372.
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De-crosslinking Resists for Positive Tone

• PMMA is classic example
– High resolution e-beam, EUV resist with low LER
– Problem:  low sensitivity

• Acid catalyzed de-crosslinking
– Improved sensitivity
– Use acetal bonds to crosslink otherwise scCO2 soluble species

Spin Coat
scCO2

Un-crosslinked 
(soluble in scCO2)

Crosslinked 
(insoluble)

Anneal Expose
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Positive Tone Molecular Glass Resists for scCO2 Development
Film with hydroxy containing 
molecule; crosslinker; PAG

Film with Crosslinked network; 
PAG

125oC

Film with De-Crosslinked 
molecule; crosslinked regions

Expose, PEB
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Positive Tone Molecular Glass Resists for scCO2 Development
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Conclusions
• Many inherent benefits to using supercritical fluid processes
• Potential benefits can be realized with breakthrough in materials

– Fluorinated resists
– Cosolvents
– Fluorinated or solubilizing additives
– Molecular glass resists

• Sub-65 nm features with high aspect ratios can be achieved
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