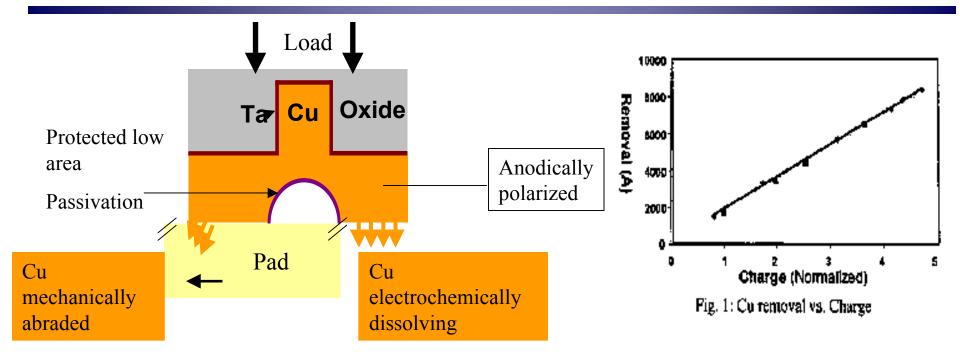
Anodic Dissolution Of Copper In Dilute Hydroxylamine Solutions - Applications To ECMP Of Copper

A. Muthukumaran and S.Raghavan

Department of Materials Science and Engineering The University of Arizona, Tucson, AZ 85721



Outline

- Background
- ➢ Objective
- ➢ Materials and Methods
- Results and Discussion
- ➤ Summary
- Ongoing Work
- > Acknowledgements

ECMP for Bulk Copper Removal

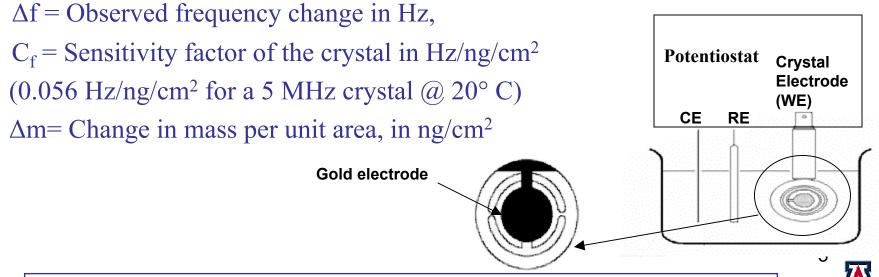
> Wafer is anodically biased during polishing.

- Passivating agent/corrosion inhibitor is added to slurry which protects low lying areas while higher areas are polished.
- > Inhibitors must be stable at anodic overpotentials
- Conventional inhibitor is benzotriazole (BTA).

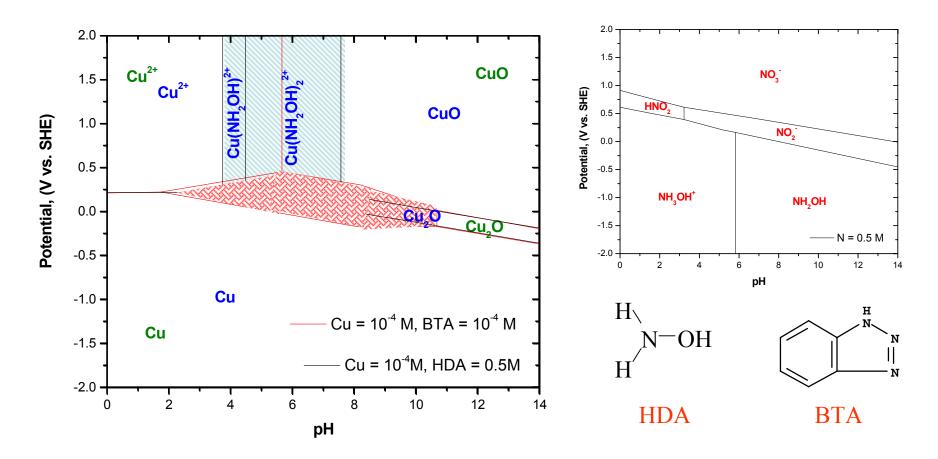
Source : L. Economikos et al., *IEEE International Interconnect Technology Conference*, pp. 233-235, June 2004.

>Applied charge controls the amount of copper dissolution

- Investigate the use of hydroxylamine chemistry in ECMP of copper
- To conduct removal rate experiments under applied pressure and potential and relate to QCM results
- Characterize the effect of applied anodic overpotential on the dissolution of electrodeposited copper films in hydroxylamine chemistry using quartz crystal microbalance
- Investigate the effectiveness of benzotriazole in inhibiting copper dissolution



Quartz Crystal Microbalance (QCM)


- Extremely sensitive sensor capable of measuring mass changes in the nanogram/cm² range
- Sauerbrey equation:

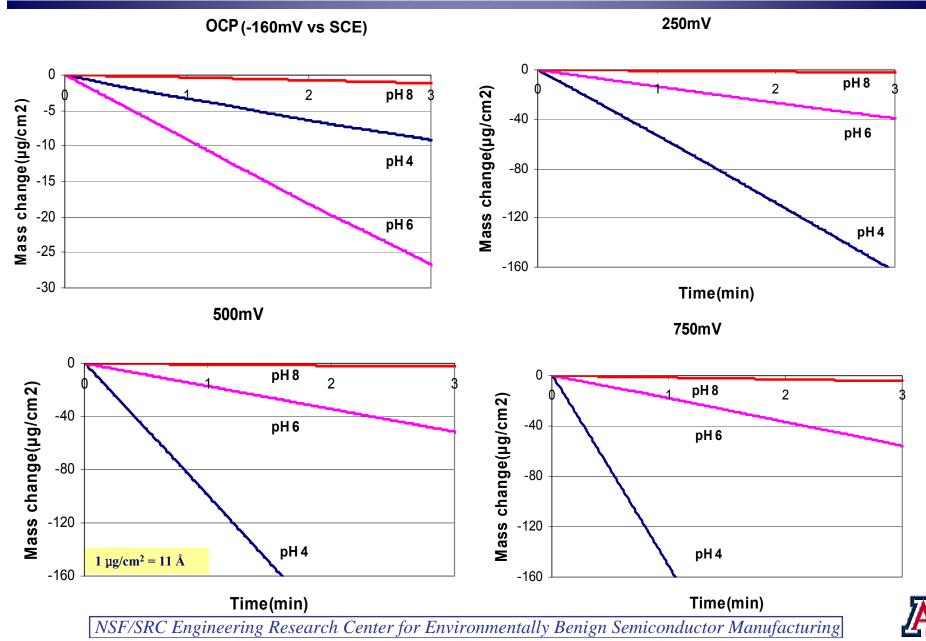
Relates the change in oscillation frequency of the crystal (QCM electrode surface) to mass change per unit area at the electrode surface.

$$\Delta f = -C_f \times \Delta m$$

Pourbaix Diagram

- > $NH_3OH^+ \Leftrightarrow NH_2OH + H^+, pKa = 5.8$
- Oxidizing agent at acidic pH
- Reducing agent at alkaline pH
- Complexes copper in pH range 4-7

- BTA⁻ forms a solid cuprous complex, CuBTA(s) for a wide pH range (3 -11)
- Copper oxide dominates the rest of alkaline region


Materials and Methods

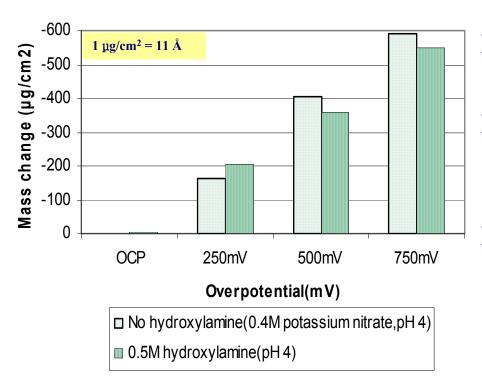
- ➢ MAXTEK RQCM
 - 5 MHz crystal with Gold electrode (Active area ~ 0.8 cm²)
- Copper was electroplated on gold
 - Commercial copper plating bath: CuSO₄ solution + accelerator + suppressor
 - Current density = 2 mA/cm² and plating duration = 45 mins
 - Thickness of Copper film 2 μm
 - Non-porous and uniform copper film
- ➢ Electroplated copper film(~0.8µm) on Tantalum (polishing expts)
- Electrochemical experiments
 - EG&G PARC 273A potentiostat (Interfaced with RQCM)
 - Specially designed laboratory scale Electrochemical abrasion cell (EC-AC) tool
 - Perkin Elmer 2380 Atomic absorption spectrophotometer
 - Ref. electrode SCE, Counter electrode Platinum

Results and Discussion

Effect of Overpotential and pH on Cu Removal in 0.1M Hydroxylamine System

Dissolution Rate of Copper in Hydroxylamine Solutions

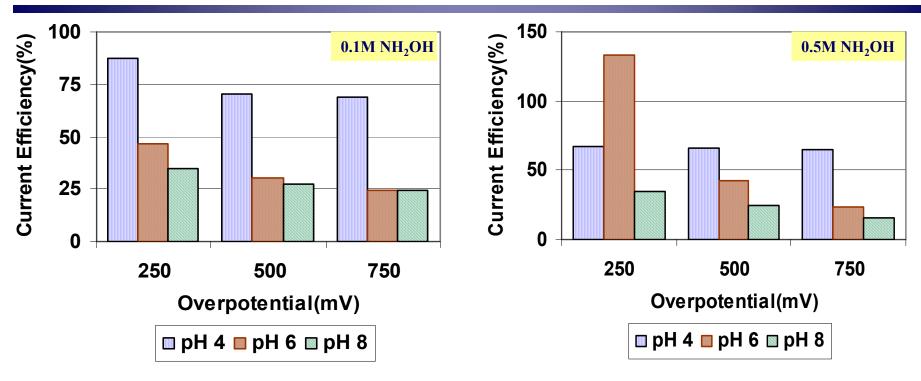
	Overpotential (η)	Dissolu	Dissolution rate of copper (Å/min)		
NH₂OH	(vs SCE)	рН 4	рН 6	рН 8	
	OCP(-160mV)	30	100	5	
	250mV	600	145	7	
0.1 M	500mV	1115	190	10	
	750mV	1730	205	15	
	OCP (10mV)	55	500	40	
0.5M	250mV	2270	2200	625	
	500mV	3940	1200	760	
	750mV	6030	1200	920	


Note:

>Dissolution rate of copper in hydroxylamine solution was found to be strongly dependent on pH and overpotential

>Exhibits a maximum dissolution in the vicinity of pH 6, and the rate drops off significantly on either side

Comparison of Mass Change of Copper -With and Without Hydroxylamine Solution (pH 4)



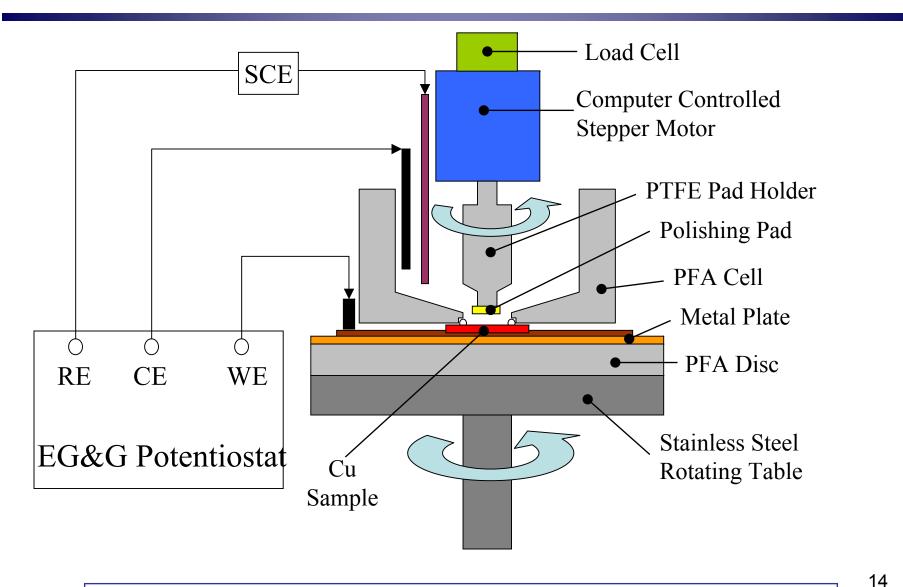
- Conductivity of 0.5M NH₂OH = 43mS/cm
- Conductivity adjusted (using KNO₃) to 43mS/cm for solution containing no hydroxylamine.
- No significant difference in mass change may indicates that the acidic nature of hydroxylamine solution is responsible for higher dissolution rate of copper

<u>Note:</u> copper gets peeled off from the surface and uniform dissolution was not achieved in the solution without hydroxylamine.

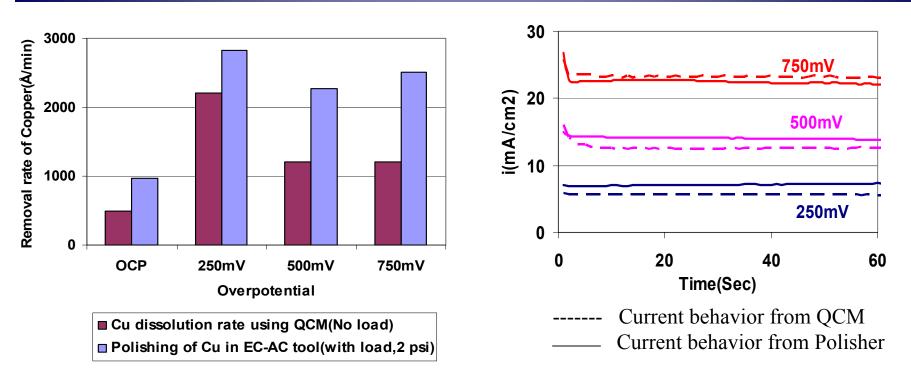
Current Efficiency vs. Overpotential

- >At pH 4, the current efficiency is above 70% under all applied anodic overpotentials.
- Relatively low current efficiency is observed at pH 6 and 8

 $Current \ Efficiency (\%) = \frac{[Actual \ RR - Estimated \ RR]}{Actual \ RR} \times 100$

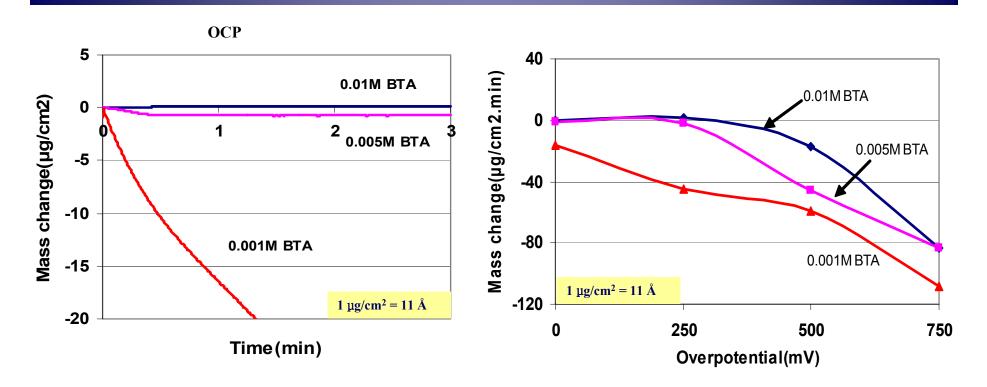

- >At pH 4, the current efficiency is above 65% under all applied anodic overpotentials.
- >At pH 6 for $\eta = 250$ mV, the current efficiency is above 130% (???)
- Current efficiency drops as the overpotential is increased

Polishing Experiments



ElectroChemical Abrasion Cell (EC-AC) Tool

Comparison of Polishing and QCM Rates – 0.5M Hydroxylamine Solution (pH 6)

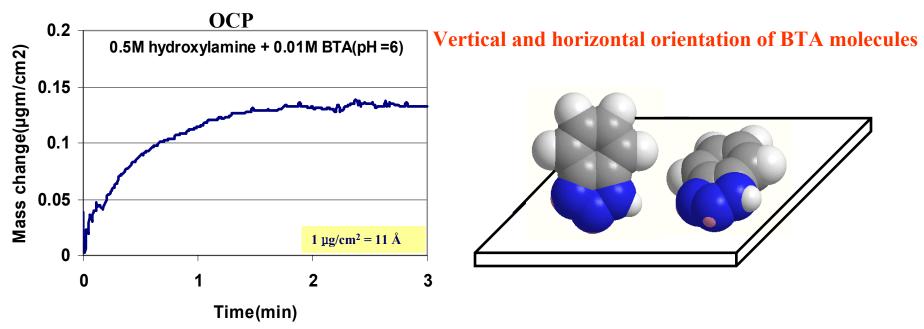


- Copper polished in 0.5M hydroxylamine solution (pH 6) in EC-AC tool with a load of 2 psi.
- > Polishing of copper increases the total removal rate under all applied overpotential.
- Current density profile is almost the same in both QCM and the polisher which may indicate that the increase in removal rate is only due to the applied load.
 15

Effectiveness of BTA

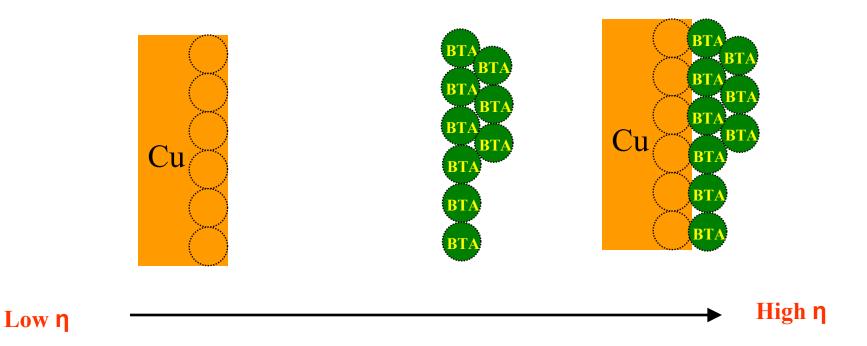
Effect of BTA Concentration on Cu Removal in 0.5M Hydroxylamine System (pH 6)

- ➢ OCP of Cu is 10mV (vs SCE)
- > Rate of Copper removal in hydroxylamine is significantly reduced in the presence of BTA at $\eta < 500 mV$
- > At higher overpotentials (>500mV), BTA becomes ineffective.

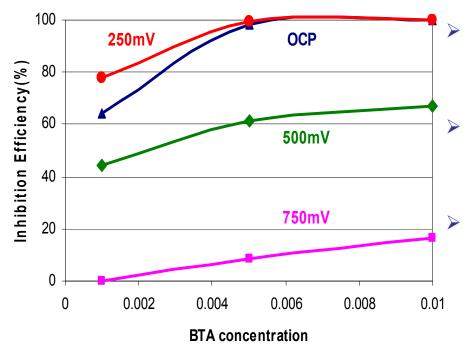

Dissolution Rate of Copper in Hydroxylamine Solution Under Different Anodic Overpotentials at Different BTA Concentrations

Overpotential(η)	Dissolution rate (Å/min) of copper in 0.5M hydroxylamine (pH = 6)					
	0.001M BTA	0.005M BTA	0.01M BTA	No inhibitor		
ОСР	180	8	*	500		
250 mV	490	14	*	2200		
500 mV	670	460	395	1200		
750 mV	1200	1100	1000	1200		

Note: * denotes that the mass is increasing (BTA adsorption on Copper)


Kinetics and Mechanism of Copper Passivation by BTA

- > BTA rapidly forms a passive layer on copper surface
- Multilayer adsorption of BTA (2 or 4 layers depending on orientation) on to the copper surface.
- Adsorbed BTA in the first layer forms a cuprous-BTA polymeric complex, while the subsequent BTA layers attach by physisorption



Passivation Mechanism – Copper/BTA

Inhibition Efficiency as a Function of BTA Concentration in 0.5M Hydroxylamine Solution (pH 6)

- 0.005M and 0.01M BTA offer excellent protection up to $\eta \sim 250 \text{ mV}$
- At higher overpotential, $\eta > 250$ mV, BTA becomes ineffective
- Increase in BTA concentration, increases the inhibition efficiency

Summary

- Copper dissolution in hydroxylamine increases with respect to overpotential.
- At pH 4, dissolution rate of copper in 0.5M hydroxylamine solution is 6030 Å/min at 750mV overpotential.
- ✤ Maximum current efficiency is observed at pH 4.
- In 0.5 M hydroxylamine solution at pH 6, the removal rate of copper during polishing is higher than that observed in QCM experiments
- ★ BTA rapidly forms a passive layer and offers very good protection at lower overpotential (≤ 250mV). At higher overpotential, BTA films dissolve actively and the dissolution rate increases with overpotential.
- Under OCP condition, BTA forms a multilayer film on copper surface.

Ongoing Work

> Developing new chemistries for ECMP of Copper.

>Investigating the feasibility of removal of barrier layers

(Ta/TaN) using ECMP technique.

Acknowledgements

- NSF-SRC Center for Environmentally Benign Semiconductor Manufacturing at the University of Arizona, Tucson, AZ.
- Dr.Subramanian Tamilmani, former graduate student, now with Intel corp, Santa Clara.
- ➢ Viral, Dave and fellow group members.

