

Particle Adhesion to Photomasks

Gautam Kumar, Ravi Jaiswal, Shanna Smith and Stephen Beaudoin

Purdue University School of Chemical Engineering Forney Hall of Chemical Engineering 480 Stadium Mall Dr. West Lafayette, Indiana 47907-2100 Phone: (765) 494-7944 sbeaudoi@purdue.edu

Introduction

- Knowledge of how strongly particles adhere to surfaces is vital to the microelectronics industry
- Removal of particulate contaminants at the micron scale tends to be less of a problem – application of removal force is easier
- Removal of nano-scale particulate contaminants is very difficult even though the adhesion force is very small
- Effects of solution properties on contaminant adhesion need to be evaluated to mimic conditions used in cleaning protocols
- Scaling of adhesion forces need to be understood to be able to predict removal criteria for nano-scale contaminants

Particle Characteristics

The Academic System

Polystyrene Latex Sphere
(PSL sphere)
· · /
CONTRACTOR OF THE OWNER
5 μm
5 μm

- Ideal geometries
- Can model contact area using classic approaches
 - Contact mechanics (JKR, DMT...)
 - DLVO
- Uniform microscopic morphology
 - Empirical, semi-empirical approaches

- Unusual geometry
- Random microscopic morphology
- Compression/deformation of surface asperities
- Chemical heterogeneities
- Settling (tilting, shifting)
- Statistical information

Where do Different Forces Matter?

Depending on system

- vdW forces dominant at separation distances ~20 to ~50 nm
- ES forces dominant at larger separations

- In Region I, vdW forces are always dominant
- In Region II, electrostatic forces become dominant

Force Distributions: Multiple Contacts I

Force Distributions: Multiple Contacts II

Force Distributions: Multiple Contacts III

Force Distributions: Multiple Contacts IV

Force Distributions: Multiple Contacts V

PSL Interactions with SiO₂

- Electrostatic interactions do not have a significant effect at different pHs
- Large contact area between sphere and wafer dominated by vdW

Alumina Interactions with SiO₂

pH (Constant Ionic Strength 0.01 M)

- Electrostatic interactions do affect the adhesion force, which varies with pH
- Large area between particle and wafer out of contact
- Small contact area

How to Describe?

van der Waals (vdW) Force Model

 $F = \sum \left| -\frac{\sigma^2}{2\varepsilon_o \varepsilon} + kT \sum_i (c_i^*(0) - c_{io}^*) * Area \right|$

Calculation of Electrostatic Forces

2.) Calculate force

$$\frac{F}{Area} = -\frac{\sigma^2}{2\varepsilon_0\varepsilon_r} + kT\sum_i \left(c_i^*(0) - c_{io}^*\right)$$

Integrate over surfaces

Combined vdW, ES Interaction Models

Geometric Models

Photomodeler_® Pro Reconstruction

Particle Adhesion Measurements

AFM Schematic

Particles Mounted on AFM Cantilevers

PSL Particle

Distribution of Forces

PSL Interactions with SiO₂

- Electrostatic interactions do not have a significant effect at different pHs
- Large contact area between sphere and wafer dominated by vdW

Alumina Interactions with SiO₂

pH (Constant Ionic Strength 0.01 M)

- Electrostatic interactions do affect the adhesion force, which varies with pH
- Large area between particle and wafer out of contact
- Small contact area

Nanoscale Adhesion Approach

- Measure, model micron-scale adhesion
- Extract vdW, ES constants

- Measure nano-scale adhesion
- Model adhesion using constants
 from micron-scale

- Can measure nano-scale adhesion
- Can model roughness and geometry effects
- Can predict nano-scale adhesion

Silicon Dioxide Surface

AFM Image

FFT model Regeneration

PURDUE

School of Chemical Engineering

Silicon Nitride Particle: Micron-Scale

FESEM image of a Si_3N_4 particle mounted on an AFM cantilever

Photomodeler Pro® model for the nitride particle

PURDUE

School of Chemical Engineering

Silicon Nitride Cantilevers: Nanoscale

Sharpened silicon nitride probe

Max ROC ~ 40nm

Geometry considered in modeling the force between nanoscale cantilevers and substrates

Silicon Nitride Adhesion to Silicon Dioxide in Air

Force Distributions: Multiple Contacts I

Force Distributions: Multiple Contacts II

Force Distributions: Multiple Contacts III

Force Distributions: Multiple Contacts IV

Force Distributions: Multiple Contacts V

Micron-Nanoscale Adhesion in Air

Micron-Nanoscale Adhesion in H₂O

Micron-Nanoscale Adhesion in NH₄OH

Academic Conclusions

- Micron- and nano-scale particle adhesion can be described by vdW and electrostatic force models
- Proper accounting for roughness and geometry is required
- Particle adhesion characterized by a distribution of adhesion forces
 - Reflective of the interaction of two rough surfaces
- Particles with highly nonuniform geometry can be influenced by electrostatic forces even when in contact with a substrate

Industrial Conclusions

 Nano-scale particle adhesion not significantly influenced by composition of aqueous medium

- Electrostatic effects not significant

- Adhesion of wet particles to wet substrates much lower than adhesion of dry particles to dry substrates
- Nanoparticle adhesion forces generally less than 5-10 nN

Acknowledgements

- Financial support
 - National Science Foundation
 - CAREER grant (CTS-9984620)
 - NSF/SRC ERC for Environmentally-Benign Semiconductor Manufacturing
 - State of Indiana 21st Century Fund
 - Intel
 - Praxair Microelectronics
- SEZ America
- Stefan Myhajlenko
 - Arizona State University Center for Solid State Electronics Research
- Ann Gelb
 - Arizona State University Mathematics