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Introduction

« Knowledge of how strongly particles adhere to surfaces is
vital to the microelectronics industry

 Removal of particulate contaminants at the micron scale
tends to be less of a problem — application of removal
force is easier

 Removal of nano-scale particulate contaminants is very
difficult even though the adhesion force is very small

» Effects of solution properties on contaminant adhesion
need to be evaluated to mimic conditions used in cleaning
protocols

« Scaling of adhesion forces need to be understood to be
able to predict removal criteria for nano-scale
contaminants



Particle Characteristics

The Academic System The Real World

Alumina Particle
Polystyrene Latex Sphere |

(PSL sphere)

S um
» |deal geometries
« Can model contact area using classic * Unusual geometry
approaches « Random microscopic morphology

« Contact mechanics (JKR, DMT...) . Compression/deformation of
« DLVO surface asperities

« Uniform microscopic morphology * Chemical heterogeneities
« Empirical, semi-empirical » Settling (tilting, shifting)

approaches « Statistical information
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Where do Different Forces Matter?

« ES forces dominant at larger
separations

Depending on system
I « vdW forces dominant at
separation distances ~20 to
~50 nm
JT\ {
|

> Substrate Region | Region Il >

* In Region Il, electrostatic forces become dominant
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Force Distributions: Multiple Contacts |

Adhesion between Si;N, Cantilever and TEOS-Sourced Oxide in DI Water
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Force Distributions: Multiple Contacts I

Adhesion between Si;N, Cantilever and Quartz in DI Water
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Force Distributions: Multiple Contacts Il

Adhesion between Si;N, Particle and Quartz in DI Water
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Force Distributions: Multiple Contacts IV

Adhesion between Si;N, Cantilever and Ru in DI Water
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Force Distributions: Multiple Contacts V

Adhesion between Si;N, Particle and Ru DI Water
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PSL Interactions with SiO,
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» Electrostatic interactions do not have a significant effect at different pHs
» Large contact area between sphere and wafer dominated by vdW



Alumina Interactions with SiO,
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» Electrostatic interactions do affect the adhesion force, which varies with pH
» Large area between particle and wafer out of contact
= Small contact area
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How to Describe?

U,=-

van der Waals
Point-by-point additivity

Cpopp,dV,dV,

Hamaker Constant, A,

Approximate Solutions

Computational Solutions

{(Xz - X1)2 + (Y2 - y1)2 + (Zz - 21)2 }3

Combination of
ideal shapes

sphere-plate

+

sphere-sphere

plate-plate

Electrostatics

Poisson-Boltzmann Equation
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van der Waals (vdW) Force Model

Model Inputs
Identify key properties that
control van der Waals force

and quantify their effects

Composition

Morphology

O Deformation
%( )Y (O

Model Prediction
Distribution of
forces

Geometry
—

i

van der Waals Model
(Integrate vdW force

over volume elements)

)

Model Validation
Compare model
prediction with

experimental
measurement

Mounted

particle

Sample

cantilever Sample

holder and
translation
stage

AFM Force
Measurements
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Calculation of Electrostatic Forces

1.) Find v, 4, p Reduce equation to a system of algebraic equations

Viy=x’y Ww=w,onl, q,=0u,/ononT,

Weighted y =y +a,0, +.. q—q,#20 onT,
Residuals W= By, + By, +.. W=V =0 oOnT,

Apply to Discretized |
Boundary n

ed o .
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Combined vdW, ES Interaction Models

Generate Mathematical
Surface Representations
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Particle Adhesion Measurements

AFM Schematic Distribution of Forces
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PSL Interactions with SiO,
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» Electrostatic interactions do not have a significant effect at different pHs
» Large contact area between sphere and wafer dominated by vdW



Alumina Interactions with SiO,
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» Electrostatic interactions do affect the adhesion force, which varies with pH
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Nanoscale Adhesion Approach

« Measure, model micron-scale « Measure nano-scale adhesion

adhesion « Model adhesion using constants

 Extract vdW, ES constants from micron-scale

« Can measure nano-scale adhesion
« Can model roughness and geometry effects

» Can predict nano-scale adhesion
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Silicon Nitride Particle: Micron-Scale

54800 5.0kV x15.0k SE(M)

FESEM image of a Si;N, particle Photomodeler Pro® model for the
mounted on an AFM cantilever nitride particle
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Silicon Nitride Cantilevers: Nanoscale

Sharpened silicon
nitride probe

Max ROC ~ 40nm

Region considered in force 54800 5.0k 350K SE(U) Ay i
calc<lations
4 — __

T \ Geometry considered in modeling the
force between nanoscale cantilevers

~2 um
and substrates
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Silicon Nitride Adhesion to Silicon Dioxide in Alr
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Force Distributions: Multiple Contacts |

Adhesion between Si;N, Cantilever and TEOS-Sourced Oxide in DI Water
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Force Distributions: Multiple Contacts I

Adhesion between Si;N, Cantilever and Quartz in DI Water
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Force Distributions: Multiple Contacts Il

Adhesion between Si;N, Particle and Quartz in DI Water
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Force Distributions: Multiple Contacts IV

Adhesion between Si;N, Cantilever and Ru in DI Water
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Force Distributions: Multiple Contacts V

Adhesion between Si;N, Particle and Ru DI Water
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Micron-Nanoscale Adhesion in Air
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Micron-Nanoscale Adhesion in H,O
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Micron-Nanoscale Adhesion in NH,OH
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Academic Conclusions

* Micron- and nano-scale particle adhesion can be
described by vdW and electrostatic force models

* Proper accounting for roughness and geometry
IS required

« Particle adhesion characterized by a distribution
of adhesion forces
— Reflective of the interaction of two rough surfaces

 Particles with highly nonuniform geometry can

be influenced by electrostatic forces even when
In contact with a substrate
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Industrial Conclusions

* Nano-scale particle adhesion not
significantly influenced by composition of
agqueous medium
— Electrostatic effects not significant

* Adhesion of wet particles to wet substrates
much lower than adhesion of dry particles
to dry substrates

* Nanoparticle adhesion forces generally
less than 5-10 nN
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