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Introduction
• Knowledge of how strongly particles adhere to surfaces is 

vital to the microelectronics industry
• Removal of particulate contaminants at the micron scale 

tends to be less of a problem – application of removal 
force is easier

• Removal of nano-scale particulate contaminants is very 
difficult even though the adhesion force is very small

• Effects of solution properties on contaminant adhesion 
need to be evaluated to mimic conditions used in cleaning 
protocols

• Scaling of adhesion forces need to be understood to be 
able to predict removal criteria for nano-scale 
contaminants
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Particle Characteristics

5 μm

5 μm

Alumina Particle

• Ideal geometries 
• Can model contact area using classic 

approaches
• Contact mechanics (JKR, DMT…)
• DLVO

• Uniform microscopic morphology
• Empirical, semi-empirical 

approaches

• Unusual geometry
• Random microscopic morphology
• Compression/deformation of 

surface asperities
• Chemical heterogeneities
• Settling (tilting, shifting)
• Statistical information

The Academic System The Real World

Polystyrene Latex Sphere 
(PSL sphere)
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Where do Different Forces Matter?

Substrate Region I Region II

• In Region I, vdW forces are always dominant

• In Region II, electrostatic forces become dominant

Depending on system

• vdW forces dominant at 
separation distances ~20 to 
~50 nm

• ES forces dominant at larger 
separations
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Force Distributions: Multiple Contacts I
Adhesion between Si3N4 Cantilever and TEOS-Sourced Oxide in DI Water

Cantilever ROI = 135nm
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Force Distributions: Multiple Contacts II

Cantilever ROI = 110 nm

Adhesion between Si3N4 Cantilever and Quartz in DI Water
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Force Distributions: Multiple Contacts III

Nominal Particle 
Diameter = 4.1μm

Adhesion between Si3N4 Particle and Quartz in DI Water
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Force Distributions: Multiple Contacts IV

Cantilever ROI = 103 nm

Adhesion between Si3N4 Cantilever and Ru in DI Water
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Force Distributions: Multiple Contacts V

Nominal Particle Diameter = 2.9 μm

Adhesion between Si3N4 Particle and Ru DI Water
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PSL Interactions with SiO2
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• Electrostatic interactions do not have a significant effect at different pHs
• Large contact area between sphere and wafer dominated by vdW
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Alumina Interactions with SiO2

Electrostatic interactions do affect the adhesion force, which varies with pH
Large area between particle and wafer out of contact
Small contact area
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How to Describe?

5 μm

van der Waals

Combination of 
ideal shapes ( )

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+−

+
= −

−

−
h

sp

sp
h

sp
h

e
e

edF κ
κ

κ

ψψ
ψψψψκεε

222

22
0 2

14

( ) ( )( )2
2

2
1212

0
2

cosh2
sinh2

ψψκψψ
κ

εεκ
−−= h

h
F r

+

sphere-plate

plate-plate

sphere-sphere
++

Hamaker Constant, A12

( ) ( ) ( ){ }32
12

2
12

2
12

212112
12

zzyyxx

dVdVCdU
−+−+−

−=
ρρ

Point-by-point additivity

2
112

6h
RAF =

21

21

6 RR
RR

h
AF

+
−

=
+

+
3

12

12 h
AF
π

=
+

ψκψ 22 =∇

Tk
nze

Br

i ioi

εε
κ

0

22∑=

( ) ( )( )2
2

2
1212

0
2

cosh2
sinh2

ψψκψψ
κ

εεκ
−−= h

h
F r

Approximate Solutions Approximate Solutions

Computational Solutions Computational Solutions

Poisson-Boltzmann Equation
Electrostatics
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van der Waals (vdW) Force Model
Model Inputs

Identify key properties that
control van der Waals force
and quantify their effects 

Model Prediction  
Distribution of 

forces

Model Validation 
Compare model 
prediction with 
experimental 
measurement

Geometry

Deformation

Morphology

Composition

cantilever
Sample

Sample 
holder and 
translation 

stage

Mounted 
particle

AFM Force 
Measurements

van der Waals Model
(Integrate vdW force 

over volume elements)

h
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Calculation of Electrostatic Forces
1.) Find ψ,  q, ρ

2.) Calculate force
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Combined vdW, ES Interaction Models

Compression/DeformationCompression/Deformation

SEM
(Geometry)

vdW + EDL ModelvdW + EDL Model

AFM
(Topographic Data)

Generate Mathematical
Surface Representations
Generate Mathematical

Surface Representations

Contact SurfacesContact Surfaces
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force/depth 
profile

AFM Force MeasurementsAFM Force Measurements

3-D 
Reconstruction

ζ 
(mV) pH

IEP

Surface Potential

Removal Force StatisticsRemoval Force Statistics

Applied LoadApplied Load
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Geometric Models
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Distribution of Forces
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PSL Interactions with SiO2
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• Electrostatic interactions do not have a significant effect at different pHs
• Large contact area between sphere and wafer dominated by vdW
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Alumina Interactions with SiO2

Electrostatic interactions do affect the adhesion force, which varies with pH
Large area between particle and wafer out of contact
Small contact area
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Nanoscale Adhesion Approach
• Measure, model micron-scale 

adhesion

• Extract vdW, ES constants

• Measure nano-scale adhesion

• Model adhesion using constants 
from micron-scale

• Can measure nano-scale adhesion

• Can model roughness and geometry effects

• Can predict nano-scale adhesion
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Silicon Dioxide Surface

AFM Image FFT model Regeneration
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Silicon Nitride Particle: Micron-Scale

FESEM image of a Si3N4 particle 
mounted on an AFM cantilever

Photomodeler Pro® model for the 
nitride particle
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Silicon Nitride Cantilevers: Nanoscale
Sharpened silicon 
nitride probe

Max ROC ~ 40nm

~2 μm~10nm

Region considered in force 
calculations

Geometry considered in modeling the 
force between nanoscale cantilevers 
and substrates
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Silicon Nitride Adhesion to Silicon Dioxide in Air

Tip ROC=12nm Tip ROC=36nm
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Force Distributions: Multiple Contacts I
Adhesion between Si3N4 Cantilever and TEOS-Sourced Oxide in DI Water

Cantilever ROI = 135nm
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Force Distributions: Multiple Contacts II

Cantilever ROI = 110 nm

Adhesion between Si3N4 Cantilever and Quartz in DI Water
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Force Distributions: Multiple Contacts III

Nominal Particle 
Diameter = 4.1μm

Adhesion between Si3N4 Particle and Quartz in DI Water
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Force Distributions: Multiple Contacts IV

Cantilever ROI = 103 nm

Adhesion between Si3N4 Cantilever and Ru in DI Water
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Force Distributions: Multiple Contacts V

Nominal Particle Diameter = 2.9 μm

Adhesion between Si3N4 Particle and Ru DI Water
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Micron-Nanoscale Adhesion in Air

ROIs (nm)

MSCT: 110

OTR8: 35 

Particle: 3.5 (μm)
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Micron-Nanoscale Adhesion in H2O

ROIs (nm)

MSCT: 125

OTR8: 25 

Particle: 2.9 (μm)
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Micron-Nanoscale Adhesion in NH4OH

ROIs (nm)

MSCT: 90

OTR8: 40 

Particle: 3.2 (μm)
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Academic Conclusions

• Micron- and nano-scale particle adhesion can be 
described by vdW and electrostatic force models

• Proper accounting for roughness and geometry 
is required

• Particle adhesion characterized by a distribution 
of adhesion forces
– Reflective of the interaction of two rough surfaces

• Particles with highly nonuniform geometry can 
be influenced by electrostatic forces even when 
in contact with a substrate
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Industrial Conclusions

• Nano-scale particle adhesion not 
significantly influenced by composition of 
aqueous medium
– Electrostatic effects not significant

• Adhesion of wet particles to wet substrates 
much lower than adhesion of dry particles 
to dry substrates

• Nanoparticle adhesion forces generally 
less than 5-10 nN
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