Characterizing Copper-Hydrogen Peroxide Film Growth and Dissolution Kinetics for Application in Multi-Step Chemical Mechanical Planarization Models

Darren DeNardis

Department of Chemical and Environmental Engineering

University of Arizona

NSF/ERC CEBSM TeleSeminar

March 23, 2006

CMP Process Background

Two-Step Removal Mechanism

$$Cu + OX \xrightarrow{k_1} CuOX^*$$

$$\mathbf{k}_1 = \mathbf{A} \cdot \exp\!\left(\frac{-\mathbf{E}}{\mathbf{k}\mathbf{T}}\right)$$

$$CuOX^* \xrightarrow{k_2} CuOX$$

$$k_{2} = c_{p} \mu_{k} P U$$

$$RR = \frac{M_w}{\rho} \frac{k_2 k_1}{k_2 + k_1}$$

* Indicates surface species

Driving Force

Important at 1wt% H₂O₂

Static etch rate is 150 A/min at 25°C

Driving Force

<u>Limitation:</u> Film removal rate constant depends on both chemical AND mechanical processes

Separation of 'C' and 'M' in CMP

- If k₁ and k₃ can be experimentally determined *a priori*, k₂ comprises mechanical processes only and can be extracted from CMP experiments
- The chemical and mechanical contributions can be quantified separately

Topics

- Characterize Cu H₂O₂ system in general
- Passive film formation as f(T)
- Passive film dissolution as f(T)

pH Ranges of Interest

Experimental

- CMP before each test to remove native oxides
- Wafers dried with UHP N₂ and weighed
- pH = 5 6
- Solutions were stirred
- Cu/TaN/SiO₂/Si stacked wafers
- $H_2O_2 H_2O$ solutions only

Preliminary Results

At 1 wt% H_2O_2 , increases in mass were observed indicating film growth

$$\begin{split} m_{i} &= m_{Cui} + m_{ws} \\ m_{f} &= m_{Cuf} + m_{film} + m_{ws} \\ m_{Cui} &= m_{Cuf} + m_{film(asCu)} \end{split}$$

$$t_{film} &= \frac{4}{\pi d^{2} \rho_{film}} \frac{\left(m_{f} - m_{i}\right)}{\left(1 - \frac{MVV_{Cu}}{MW_{film}}\right)} \end{split}$$

Cu loss to solution
(determined to be negligible)
film
Cu
wafer stack
Assumes uniform film
growth, so
$$\Delta$$
m results
were compared to
ellipsometric results

1 wt% H₂O₂ Growth Profile

Surface Characterization

7 hr

22 hr

Growth Profile and SEM Summary

- Growth saturation occurs at 500 A after 12 hours in 1 wt% H₂O
 - How do saturation thickness and time change with $[H_2O_2]$?
- After CMP, images may indicate:
 - Bare copper metal and/or thin layer of copper oxide
 - XPS analysis to clarify
- After 5min, a non-uniform film is observed no distinct crystals
- Distinct crystals are observed on the surface for t > 10min
 - It is difficult to determine if crystals increase in size for t < 1 hour
 - The crystals at the solid-liquid interface clearly increase in size for t > 1 hour
 - A Deal-Grove type model is *not directly* applicable to this system
- Does the film composition change with time?

Cu 2p_{3/2} XPS Spectra

14

Full XPS Spectrum (excluding Cu 2p)

Effects of H₂O₂ Concentration

Conclusions

- Copper film growth occurs at pH = 5 to 6 in H₂O₂ systems
 - Two or three step models are applicable and should continue to apply at higher pH
 - Dissolution dominates pH 4 H₂O₂ systems so alternative models must be applied
- The copper surface after CMP consists of little or no oxide
- Cu₂O forms at short times
 - Corroborates previous aqueous- phase work using other oxidants
- Solid-liquid surface morphology changes with time
- At pH values studied, increasing [H₂O₂] increases growth rate

Topics

• Characterize $Cu - H_2O_2$ system in general

• Passive film formation as f(T)

• Passive film dissolution as f(T)

Effect of Temperature on Oxidation

Is Cu Oxidation Similar to Si?

Thermal Oxidation of Silicon

- In order for SiO₂ to form, Si must be consumed
- Two step process:
 - O₂ must reach Si SiO₂ interface
 - O_2 must react at the Si Si O_2 interface
- Constantly moving boundaries:
 - Si SiO_2
 - O_2 SiO₂ (since ρ [SiO₂] < ρ [Si], for every X thickness of SiO₂ formed, 0.44X thickness of Si is consumed)

$$t - t_o = \left(\frac{1}{kC_s v}\right) \left(Z - Z_o\right) + \left(\frac{1}{2DC_s v}\right) \left(Z^2 - Z_o^2\right)$$

Silicon Dioxide Structure

- network former
- high covalent bond strength
- forms channels (5 6 member rings) that facilitate anion transport

Cation transport unlikely because cations are tightly <u>held</u>

Cuprous Oxide Structure

after Filippetti et al. Phys. Rev. B 72 (2005) 035128.

- network modifier
- ionic bonding
- cations held loosely
- inter twined sheets

No large channels are likely to exist to facilitate anion transport

Cations are most likely to move

Explains surface morphology and composition changes with time

Copper Oxidation Mechanism

 $= Cu_2O$ = Cu $= oxidant (H_2O_2, O_2, O, etc.)$

Copper Oxidation Mechanism

V = potential developed across oxide film

W = sum of the energy of solution of a metal ion in the oxide (U) and the activation energy for the ion to transit from one interstitial position to the the next (U')

Model Basis: Drift Velocity

energy

 $\upsilon = drift \ velocity$

 $\mu_{\text{B}} = \text{ionic mobility}$

E = electric field

However, for very thin films (10⁻⁶ cm) the field is so strong that v is no longer proportional to it.

The probability per unit time that an ion will move from one site (A) to another (B) is:

$$\int_{a} \frac{1}{\sqrt{\frac{U'}{B}}} = f \exp\left\{-\left(\frac{W}{kT} - \frac{qaE}{2kT}\right)\right\}$$

Rate of oxide growth = (volume of oxide per cation) (# cations per area) (p)

Model Evaluation

Model Evaluation

	oxidant		$T(^{o}C) = 8$	25	30	40	50	60
Cabrera and Mott*	O _{2(g)}	W (eV)		1.0				
1949		V (V)		1.0				
Krishnamoorthy, et al.	O _{2(g)}	W (eV)	0.9		0.965		1.05	
1970		V (V)	0.5		0.5		0.5	
Current Study	$H_2O_{2(aq)}$	W (eV)		0.831		0.837	0.849	0.85
		V (V)		0.95		0.95	0.95	0.95

* = based on theortical calculations

- Values from current study agree well with theoretical values and measured values for historical studies using oxygen
- Suggests that oxidation process at low temperatures and very thin films is not a strong function of oxidizer type
- Slight increase in W (2 kcal) with temperature has been previously observed and attributed to an increase in the energy of the solution in the metal with increasing temperature

Incorporation into Proposed RR Model

Topics

- Characterize $Cu H_2O_2$ system in general
- Passive film formation as f(T)
- Passive film dissolution as f(T)

Experimental

- CMP before each test to remove native oxides
- Cu/TaN/SiO₂/Si stacked wafers
- 170 A oxide grown using H₂O₂
- Oxidized wafers were submerged into stirred slurry solution <u>without</u> H₂O₂ to monitor etching characteristics

Copper Oxide Dissolution Profiles

Dissolution Process

$$RL_{(aq)} + CuO_{(s)} \rightarrow RX_{(s)} + Cu(L)_{i}^{2+}{}_{(aq)}$$
$$A_{(aq)} + B_{(s)} \rightarrow C_{(s)} + P_{(aq)}$$

- A soft byproduct film was observed on wafer surface
- Film was present after long times
- Controlling Mechanisms
 - Surface reaction
 - Linear profile
 - Diffusion through BL
 - Reported that profiles are not a function of stirring speed
 - Diffusion through byproduct

Model Development

QSS Assumption:

Diffusion of A through the byproduct layer is fast compared to dx/dt

Flux of A at any x:

$$N_{A} = -D \frac{dC_{A}}{dx}$$

$$\frac{dn_{A}}{dt} = \frac{\pi d^{2}}{4} N_{A}$$
General mol balance:
$$dn_{B} = dn_{A} = \rho_{B} dV = \frac{\rho_{B} \pi d^{2}}{4} dx_{C}$$
Dissolution time:

$$t = \frac{\rho_{B} X^{2}}{2DC_{AS}} \left(\frac{x_{C}}{X} - 1\right)^{2}$$

$$\tau = \frac{\rho_{B} X^{2}}{2DC_{AS}}$$

$$DC_{AS} = A \exp\left(-\frac{E_{a}}{RT}\right)$$

$$m_{wi} - m_{wf} \cong m_{X} - m_{C} = m_{X} \left(\frac{t}{\tau}\right)^{0.5}$$

Application of Model

35

Model Comparison

T (°C)	1/τ (s⁻¹)	τ (S)	$D C_{As}$ (mol cm ⁻¹ s ⁻¹)
25	2.30E-04	4.35E+03	2.63E-17
40	9.74E-04	1.03E+03	1.12E-16
60	9.02E-03	1.11E+02	1.03E-15

Model Parameters:

Ea = 86.9 kJ mol⁻¹

$$A = 4.12 \times 10^{-2} \text{ mol cm}^{-1} \text{ s}^{-1}$$

Incorporation into Proposed RR Model

Rate Comparison of Steps 1 and 3

- Oxidation is faster than dissolution for oxide thicknesses of interest, which should be the case
 - Ox. rates must be high enough to facilitate CMP RR of 10000 A min⁻¹
- Dissolution could be considered constant
- Oxidation is a strong function of thickness
- How do these de-coupled steps compare to a process with oxidation and dissolution taking place simultaneously?

Combined Oxidation and Dissolution

- Copper wafers were exposed to CMP slurry solution + 1 wt% H₂O₂
- Observed static etch rates are on the order of 10⁻⁹ mol Cu cm⁻² s⁻¹ (150 A min⁻¹), which compare well with the dissolution model
- Verifies that the oxidation and dissolution processes can be decoupled

Dissolution rate (k₃) was found to be negligible for Fujimi PL-7102 system at the *pressure* and *velocity* conditions used in this study

However it becomes more important as pressure x velocity approaches zero

40

Comparison of RR Data to Model

RMS Error and Sensitivity

42

CMP Model Summary

Preston's Model

• 2 Fitting parameters.

•No real-time measurements can be used to predict the removal rate of a wafer being polished.

•The intercept does not predict RR in the absence of applied P and U

2-Step with Flash Heating Model

•Real-time measurements can be used to predict the removal rate of a wafer being polished.

• 5 Fitting parameters.

-Characterization of \boldsymbol{k}_1 using an Arrhenius is over-simplified

•Not applicable at PxU = 0

•Real-time measurements can be used to predict the removal rate of a wafer being polished.

• 1 Fitting parameter.

 \bullet Characterization of k_1 shows dependence of oxide growth on oxide thickness.

•Applicable at PxU = 0.

•Oxide dissolution is controlled by diffusion of complexant agent through by-product film.

Applicability of 3-Step Model in copper CMP

Overall Conclusions

- A 3-step RR mechanism has been developed which separates chemical and mechanical contributions to removal
 - Very useful for evaluating 'how chemical or mechanical' a given consumable set is
- The Cu oxidation process using 1 wt% H_2O_2 has been characterized
 - Two modeling parameters relating to the potential across the oxide film and the energy required for cation migration have been determined.
 - The oxidation process may be a weak function of $[H_2O_2]$ allowing results from this study to be applied to other $[H_2O_2]$
- The copper oxide dissolution process has been characterized for Fujimi PL7102 Cu CMP slurry
 - Two Arrhenius parameters have been determined that adequately describe the process found to be controlled by diffusion of the aqueous reacting species through a reaction byproduct film
- The dissolution process is controlling in static (no mechanical abrasion by pad or slurry particles) systems
- Rates predicted using the de-coupled oxidation and dissolution models developed here agree well with measured results of the combined system where dissolution and oxidation occur simultaneously

Overall Conclusions (cont.)

- With Steps 1 and 3 characterized, the only parameters that need to be extracted from RR data are those associated with Step 2 (mechanical removal)
- Oxidation model suggests that passivation layers formed during CMP are 8 to 12 A thick to facilitate removal rates on the order of 1000 to 6000 A min⁻¹
- The novel method outlined here for separately determining chemical contributions to the CMP process is crucial in slurry development and commercial slurry evaluation
- These methods could be easily implemented in determining the removal rate contributions of surfactants, inhibitors, and other additives to the CMP process
- The three-step model agrees well with removal rate data demonstrating slightly higher RMS error than using models that have a higher number of parameters
- The form of the three-step model has been shown to be very sensitive to changes in experimentally measured temperature and COF, but relatively insensitive to changes in c_p

Acknowledgements

Ara Philipossian

Farhang Shadman

J. Brent Hiskey

Len Borucki

Bob Arnold

Daniel Rosales-Yeomans

Fujikoshi Corporation

Intel Corporation

Mitsubishi Gas & Chemical

Praxair

NSF/ERC CEBSM

IPL Members