Density Functional Theory (DFT) applied to the Chemical Vapor Deposition (CVD) of Low Dielectric Constant Materials

> Thomas B. Casserly and Karen K. Gleason Department of Chemical Engineering, MIT

Dielectrics in Integrated Circuits

RC Delay:
$$\tau = RC = \left(\frac{\rho L_m}{W_m T_m}\right) \left(\frac{k\varepsilon_0 W_m L_m}{T_d}\right) = \frac{\rho k\varepsilon_0 (L_m)^2}{T_d T_m}$$

Power Consumption: $P \sim CV^2 f$

Cross Talk Noise:

$$N \sim \frac{C_{line-to-line}}{C_{total}}$$

Solventless Low-k Dielectrics

CVD vs Spin-On

Thin, Conformal Coatings Solventless Uses existing tool set Extendibility to future geometries

I de la constant de la cons

Evolution of Dielectric Materials

□ SiO₂ (k ~ 4.0) Composition 4.0 SiO_2 Fluorinated Silicate Air k = 1.0Glass (FSG), k ~ 3.7 Si:O:C:H 2.7 - 3.6(Organosilicate Organosilicate Glass Glass - OSG) (OSG), k ~ 2.7 – 3.6 k <u>% Porosity</u> **D** Porous OSG, k(p)2.7 0 □ Air Gap, k_{eff} ~ 1.4 20 2.3 SiO₂ 50 1.75 90 1.15

Precursor selection using Density Functional Theory (DFT)

Large body of research for OSG deposition

- Much is unpublished or non-specific to corporate intellectual property
- Perform experiments on the desktop first
 - Examine methoxymethylsilanes
 - Bond strengths fragmentation patterns
 - Elementary reactions
- Utilize DFT to screen precursors
 - Save time, money, resources, reduces exposure risks

OSG Building Blocks

'M' Group Chain Terminating

'T' Group Chain Crosslinking

Higher Crosslinking → Harder Materials

Connectivity # : <r>

< r >= # Network Forming Bonds # Network Forming Atoms

**To avoid double counting, each oxygen is counted as one half of an atom in the analysis.

For Si_xO_y(CH₃)_z:
$$< r >= \frac{(4x-z) + \frac{(2y)}{2}}{x + \frac{y}{2}}$$

A Theoretical Treatment

The Percolation of Rigidity

"For solids in which all atoms are able to form two or more bonds, the percolation of rigidity occurs at an average connectivity number of 2.4*"

J. Phillips, J. Non-Cryst. Solids **34**, 153 (1979) G.H. Dohler, R. Dandoloff, and H. Bilz, J. Non-Cryst. Solids **42**, 87 (1980) S.J. Limb, K.K. Gleason, D.J. Edell, and E.F. Gleason, J. Vac. Sci. Technol. A. **15**(4),1814 (1997) D.D. Burkey and K.K. Gleason, J. Appl. Phys. **93**, 5143 (2003)

Connectivity # from FTIR

<r> = weighted contribution M, D, T, and Q groups

- Spectral curve fitting to find relative amounts of M, D and T groups within each spectra
- To find Q groups
 - Assumes same number Si atoms in each spectrum and each Si is bonded to either oxygen or carbon
 - Any differences in total combined area of M, D, and T attributed to Q groups
 - Calculates the minimum number of Q groups
- Selected conformation of FTIR data by solid-state magic angle spinning ²⁹Si NMR

The Percolation of Rigidity

Design of Robust Overlying Dielectric

- Low-k OSG containing only T and Q groups
 - < r > greater than 2.4 \rightarrow Harder films
 - Silicon oxygen bonds increase hardness and modulus
 - T groups ideal, retain carbon \rightarrow lowering the dielectric constant
 - How can we intelligently choose precursors for hard OSG deposition?

11

Methodology

Examined two families of molecules

- Methylsilanes (CH₃)_nSiH_{4-n}
- Methoxymethylsilanes (CH₃O)_nSi(CH₃)_{4-n}
 - All fragments
 - All reaction products
- 56 chemical species, radicals, ions
- Over 100 reactions
- Using Gaussian[®]
 - Optimized Geometries
 - Performed Frequency Calculations
 - Single Point Energy Calculations

OSG Precursors

- Studied methylsilanes
- Examine a family of methoxymethylsilanes
 - Compute thermochemistry
 - PECVD depositions Low Power to allow control over chemistry
 - Compare and interpret the results

Fragmentation of Methoxytrimethylsilane (MO3MS)

Bond Dissociation Energies

FTIR of PECVD OSG films

Strategy to increase T groups

Examine pathways in presence of O atom

- Use precursor with most Si-C bonding
 - Retain more Si-C bonding
 - Lower k

Compute thermochemistry on desktop
PECVD depositions on the bench
Compare results

Methoxytrimethylsilane (MO3MS) reactions with Oxygen $({}^{3}P_{2})$ atom

FTIR of PECVD film from MO3MS

FTIR PECVD film from MO3MS + O₂

Trimethoxymethylsilane (3MOMS) reaction with Oxygen $({}^{3}P_{2})$ atom

FTIR of PECVD films from 3MOMS + O₂

Summary to this point

- Films from monomer only
 - dielectric constants <3 obtained</p>
 - Not enough T groups to get <r> above percolation of rigidity
- Films from monomer plus O₂
 - Loss of selectivity
 - Damage to film SiOH in resulting film
 - Dielectric constants are high
- Consider reducing chemistry
 - Examine reactions with hydrogen atom

Trimethoxymethylsilane (3MOMS) reaction with Hydrogen $({}^{2}S_{\frac{1}{2}})$ atom

Silanol Formation and reactions

- Conversion of methoxy to silanol is greatly thermodynamically favored over silane formation by removing a methyl group
- If all methoxy groups can be converted to silanol groups . . .
 - Control the ratios of M, D, T, and Q groups by varying the precursor flow rates of MO3MS, 2MO2MS, 3MOMS, 4MOS respectively

Other approaches to increase hardness

Increase Power

- Higher crosslinking
- More dense film
- What happens for us?
- Expectations
 - Loss of selectivity
 - Tend toward random assembly of radical species

3MOMS at varied plasma powers

- Loss of chemical selectivity
 - Loss of Si-CH₃
 - Complete conversion to Q, or Q and Si-Si bonding
 - Dielectric constants increase with increased power
 - Same effect is seen with pulsed plasma using 200W peak power

Methoxymethylsilane Summary

- Able to use DFT to predict CVD chemistry for low power systems
- Low-k films from precursors only but not above percolation of rigidity
- Addition of oxygen
 - Get only T and Q groups
 - k is high (>4)
- Creation of T groups with 3MOMS in reducing environment
 - Dielectric constant ~3
 - Stay above percolation of rigidity \rightarrow harder films
- At high power, lose selectivity and increase k
- Operating at low power allows for as much control over the chemistry as possible in a plasma system

Conclusions

DFT applied to CVD system

- Screen precursors for intelligent material design
 - Discover fragmentation patterns
 - Study primary reactions
 - Apply for low power systems

PECVD of low-k OSG

- Low power depositions correspond with predicted chemistry
- Novel use of reducing environment designed from DFT

Acknowledgements

SRC/Novellus Fellowship
NSF/SRC ERC for EBSM

for more detail

T.B. Casserly and K.K. Gleason, "Enthalpies of Formation and Reaction for Primary Reactions of Methyl- and Methylmethoxysilanes from Density Functional Theory", *Plasma Processes and Polymers*, 2(9), 669-678 (2005).

T.B. Casserly and K.K. Gleason, "Chemical Vapor Deposition of Organosilicon Thin Films from Methoxysilane", Plasma Processes and Polymers 2(9), 679-698 (2005).

T.B. Casserly and K.K. Gleason, "Density functional theory calculation of Si-29 NMR chemical shifts of organosiloxanes", J. Phys. Chem. B 109 (28): 13605-13610 (2005).

A.D. Ross and K.K. Gleason, "Effects of condensation reactions on the structural, mechanical, and electrical properties of plasma-deposited organosilicon thin films from octamethylcyclotetrasiloxane", J. Appl. Phys. 97 (11): 113707 (2005).

A.D. Ross and K.K. Gleason, "Enhancement of mechanical properties of organosilicon thin films deposited from diethylsilane" J. Vac. Sci. Technol. A 23 (3): 465-469 (2005).