

Imprint Lithographic Techniques for Micro- and Nano- Patterning

Professor Kenneth R. Carter

Polymer Science & Engineering Department A-416 Conte Building University of Massachusetts – Amherst 120 Governors Drive, Amherst, MA 01003 <u>krcarter@polysci.umass.edu</u> http://www.pse.umass.edu/carter

Making Useful Small Things

- Challenge of 21st Century will be to "mass produce" small functional devices – <u>ENABLE NANOTECHNOLOGY</u>
- Quickly approaching devices and structures on the molecular or even atomic scale (< 10 nm)
- Current photolithography (top down) getting complex and expensive
- Self-organizing systems (bottom-up)
 - Challenges regarding manufacturability
- Imprint and Contact patterning techniques offer an interesting alternative
 - Combine best of top down and bottom up quartz methodologies

chromium on quartz mask

reduction lens system (5X)

<u>positive tone</u> photoresist film silicon wafer

or

<u>negative tone</u> photoresist film

silicon wafer

Photolithography

- Multiple process steps
 - Spin coat liquid resist
 - Pre-bake / solvent
 evaporation
 - Expose
 - Post exposure bake
 - May use PFOS PAGs
 - Development in aqueous base
 - Rinse
 - Etch

Imprint Lithography

- Fewer process steps
 - Spin coat or apply resist
 - Emboss/contact
 - Expose
 - Etch

Imprint Lithography

Imprint lithography is generally practiced in several forms

- Thermal Imprint Lithography
 - Emboss pattern into thermoplastic or thermoset with heating
- Micromolding In Capillaries (MIMIC) soft lithography
 - Curing material confined in of channels in PDMS
- UV-Assisted Imprint Lithography
 - Curing polymer while in contact with hard, transparent mold
 Release

Carter - NSEC 11/16/06

Nano-Contact Molding (NCM) Process

Nano-Contact Molding Resists

- Based on methacrylate chemistry
- High aromatic ring content
- Issues regarding
 - Plasma resistance (O₂ Plasma rate 70-90 Å/s)
 - -Viscosity
 - Oxygen sensitivity

Trimethylolpropane triacrylate (15-33%)

phenylacetophenone (2%)

Ethoxylated (3) bisphenol A dimethacrylate (65%)

Thiol-Ene Step Polymerization

Thiol-Ene Step Polymerization

Advantages:

Photopolymerizable Monomer viscosity selectable Low oxygen sensitivity Tunability of crosslink density and mechanical properties Range of functionality available (for example etch resistance)

Challenges:

Adhesion to substrate Release from mold Ultimate resolution??? Etch resistance???

Carter - NSEC 11/16/06

Section Ana

Imprint Lithography

Power & Utility

High Resolution Pattern Transfer

Carter - NSEC 11/16/06

Master (e-beam)

Replica (etched SiO₂)

Example – Patterned Magnetic Media

McClelland, Hart, Rettner, Best, Carter, and Terris, Appl. Phys. Lett., 2002, 81(8), 1483.

- •Molded 55 nm photopolymer pillars
- •Etched pattern into substrate
- •Sputtered 11 nm CoPt film
- •Observed isolated magnetic domains

Cloning Device Structures by NCM

Participants: I. W. Moran, Sarav B. Jhavari, Yuval Ofir, Vincent M. Rotello, K. R. Carter

Goal:

New method of fabrication of electronic device structures

Method:

- New contact molding procedure has been developed for cloning existing device structures
- Using this method, any prefabricated structure on a solid substrate can be quickly replicated
- This non-destructive approach was successfully employed in duplicating multiple forms of devices in an inexpensive and reproducible manner

Cloning Step 1: Negative Mold Fabrication

Cloning Step 2: Positive Mold Fabrication

Cloning Step 3: Imprinting Process

Cloning Step 4: Etching - Au - Lift-off

Cloning Device Structures by NCM

Replicated Interdigitated Electrode with W/L = 20000/7.5

Cast Imprint Mold

- > 20 Process Steps to create this structure
- Costly, complex and materials limited

- Feasibly can be done in less than 7 Process Steps to create this structure
- Decreased cost, less complex and new low k materials set
- Can yield structures not possible by photolithographic processes

Demonstration of Imprinted low k dielectric film

Only US Patent allowed on imprinted Dielectrics, inventor Carter

Carter - NSEC 11/16/06

Carter, K. R. US Patent 6,730,617 - May 4, 2004

IBM Almaden Research Center

Acrylate Stamp 2 um lines / spaces

Stamped Dendriglass on silicon wafer 2 um lines / spaces

Acrylate Stamp test structures

Stamped Dendriglass on silicon wafer test structures

•IP Describes direct patterning of porous dielectric layers by imprint lithography

Concept of Embedded Functionality

Certain fraction of functionality advantageously located at or near surface of network

Propagation

Carter - NSEC 11/16/06

Thickness Change vs Brush Mw

- •Brushes were grown from the surface in the presence of "free" initiator
- •Solution polymer Mw was examined as a measure of brush Mw
- •Excellent agreement between thickness and brush Mw

Surface Size Control

Controlled Brush Growth From Imprinted Surfaces:

- Demonstrated the ability to mold (imprint) nanostructures and chemically modify surface by unique photopolymer design
- Accomplished by polymer brush growth from patterned resist
- Ability to control and modify size and chemistry of nano-features

Bioresponsive Surfaces

Scale bar = 100um

Sarav Jhaveri & Kai Qi

IgE / Dinitrophenol Interactions

(2) DNP-BSA Hapten Detachment Treatments

Sarav Jhaveri & Kai Qi

(3) Second IgE Treatment Restricted Use by NSF/NRC

Carter - NSEC 11/16/06

Carter - NSEC 11/16/06

Dr. Isaac Moran & Dr. Matthias Beinhoff

Beinhoff, M.; et. al., *Langmuir*, **2006**, 22(6), 2411-14. Mora, I. W.; et. al., *Chem. Mater.*, **2006**, submitted for publication.

Multidisciplinary -- 29 Faculty

- Chemistry
- Chemical Engineering
- Electrical & Computer Engineering
- Mechanical & Industrial Engineering
- Physics
- Polymer Science & Engineering

On Campus Nanofabrication Facilities & Resources

Summary

- Imprint lithography is a powerful tool for the rapid fabrication of nanostructures
- Imprint lithography can pattern large areas in few steps
- Process can take virtually any original nanostructured surface and replicate it
- Cost of ownership less than other nanofabrication techniques environmental benefits
- Patterning into: resists, metals, organics, functional materials
- Must understand surfaces and interfaces

Carter Research Group

From Left: Mike Mahdavi, Matthew Fagan, Damla Koylu, Dr. Sarav Jhaveri, and Prof. Carter.

Dr. Matthias Beinhoff

Dr. Isaac Moran

Not shown: Janet Magerlein Burcin Erenturk Dalton Cheng Dylan Donnovan (Elizabethtown C) Dominik Maschke (U. Mainz)

Drs. Tim von Werne & Erik Hagberg

- NSF Materials Research Science and Engineering Center (DMR 0213695)
- NSF DMR Polymers (DMR 0606391)
- NSF NSEC CHM (DMI-0531171)
- The Nanoimprint Lithography Laboratory recently established at the University of Massachusetts Amherst is supported by a grant from the NSF Major Research Instrumentation (MRI) program (DMR-0606391)
- IBM Corporation
- 3M Non-Tenured Faculty Award

