Quantum Chemical Simulation of ALD of HfO₂

Atashi Mukhopadhyay, Javier Sanz and Charles Musgrave

Department of Chemical Engineering Stanford University, Stanford, CA

Thin Dielectric - Gate Leakage Due to Tunneling

Current Technology:

 Leakage current from electron tunneling increasing exponentially as gate dielectric thickness decreases.

High-K Choices

Dielectric Material	к	
silicon oxide	SiO ₂	3.5
silicon nitride	Si ₃ N ₄	7
aluminum oxide	Al ₂ O ₃	9
zirconium oxide	ZrO ₂	25
hafnium oxide	HfO ₂	30 - 40

- ZrO₂, HfO₂, and Al₂O₃ are favorable candidates for the gate dielectric
 - High-k
 - Stable with respect to SiO₂ and silicate formation
- Problem: Process for producing uniform deposition with good dielectric properties needs to be developed.
 - Possible solution: Atomic Layer Deposition (ALD)

The ALD Process

1. Clean substrate 2. Chemically prepare substrate Substrate Substrate Functionalized Substrate 3. Vaporize precursors Byproduct **Precursor A** A1. Transport vapor of first First Half-Cycle precursor to substrate A2. Self-limiting reaction of first precursor with surface A3. Transport excess reactant and Substrate Substrate Repeat volatile byproduct out of reactor A PULSE A PURGE B1. Transport vapor of second Second Half-Cycle **Precursor B** precursor to substrate B2. Self-limiting reaction of second precursor with surface B3. Transport excess reactant and Substrate Substrate volatile byproduct out of reactor **B PULSE** 4 PURGE

Department of Chemical Engineering, Stanford University

Mukhopadhyay, Sanz and Musgrave

The ALD Process

Questions:

- What causes submonolayer growth?
 - Steric effects?
- What causes CI contamination when metal chloride precursors are used?
- What determines the ALD process temperature?
- How to select an ALD precursor?
- What are the ALD chemical mechanisms?
- How do you prepare a surface for ALD?
- Can an ALD process be transferred to different substrates?
- Can ALD be done selectively?

Computational Details

Computational Methods:

Slab Models

- VASP
- PW91-DFT Method
- Projected augmented wave
- 450 eV Cutoff
- Slab thicknesses chosen so that energies and displacements converged
- Semicore with 5p, 5d and 6s electrons treated explicitly
- 10x10x1 k-point sampling (chosen using the Monkhorst-Pack method)
- Born-Oppenheimer MD

6

Bulk Properties

	Present GGA	Previous LDA	Previous GGA	Expt.
Cubic				
Energy/HfO ₂ Unit	-30.45	-	-	-
V	32.11	31.95	36.15	32.77
а	5.045	5.248	5.04	5.08
Tetragonal				
Energy/HfO ₂ Unit	-30.51	-	-	-
V	32.69	32.77	37.74	
а	3.565	5.056	5.299	
с	5.146	5.127	5.373	
Monoclinic				
Energy/HfO ₂ Unit	-30.69	-	-	-
V	34.10	34.35	38.01	34.58
а	5.079	5.106	5.291	5.117
b	5.177	5.165	5.405	5.175
с	5.250	5.281	5.366	5.220
β	99.24	99.35	97.92	99.22

∆H_f= 1070.54 kJ/mol (1144 kJ/mol) (7% error)

Excellent agreement with experiment

Bulk Electronic Structure

- Band gap: 3.76 eV
- Good agreement of the character of the valence band with photoemission data
- Covalency of Hf-O bond

Mukhopadhyay, A., J. Sanz and C. Musgrave, "First-Principles Calculations of Structural and Electronic Properties of Monoclinic Hafnia Surfaces," *Phys. Rev. B*, 73, 115330-115337 (2006).

The Monoclinic HfO₂ Surfaces

Why Calculate Surface Properties? Because interface properties partially depend on substrate surface upon which films are deposited.

- The electronic structure of metal-high-K interfaces will depend upon the surface structure of the high-K upon which the metal is deposited
- High-K films are amorphous or polycrystalline and so interface properties will be an average over the interface configurations present.
- Although experimental data for HfO₂ surfaces like XRD, RHEED exist, they only provide indirect and incomplete information about the surface structure
- Interpretations of experiment is complicated by finite-size effects
- · Comparisons are often difficult and dependent on experimental conditions

The Monoclinic-(-111) Surface

HfO₂ Surface Stability and Relaxation

Unrelaxed Surface

Relaxed Surface

Face	Surface En Relaxed	ergy (J/m²) Unrelaxed	% Relaxation Energy	RMS ionic relaxation Å
(111)	0.993	1.460	32	0.026
(111)	1.199	1.562	23	0.023
(101)	1.322	1.858	29	0.033
(110)	1.388	2.043	32	0.030
(001)	1.416	2.169	35	0.060
(011)	1.484	2.100	29	0.024
(101)	1.550	2.412	36	0.047
(100)	1.667	2.165	23	0.021
(010)	1.878	2.782	33	0.040

• Although m-(-111) has the lowest surface energy, the m-(001) surface is observed experimentally and is kinetically stable during processing.

Monoclinic HfO₂ (-111) Surface Density of States

- DOS of unrelaxed surface is shifted towards lower energy
- Bandgap smaller than bulk, as expected
- Two surface states at -12 eV (O-2s) and 3 eV (O-2p)
- Relaxation causes the surface oxygen 2p state to become 'bulk-like'
- Surface state generated by surface O-2s

H₂O on the m-(001) HfO₂ Surface: BOMD Simulations

• Surface –OH groups play an important role as reactive species

- Metal precursor form a surface bound product
- Hydroxyl group formed may condense and librate water
- Dehydroxylation process is a function of temperature and pressure
- GPC will strongly depend on concentation of surface hydroxyl group.

Ab initio Born-Oppenheimer MD of water adsorbed on the monoclinic (001) HfO_2 surface (450 K)

Theoretical Background

SURFACE ENERGY:

$$A_{hkl}\Gamma_{hkl} = G(surf_{hkl} + nH_2O) - G(bulk) - n\mu_{H2O},$$

Neglecting for the condensed phase the varaition of internal energies

$$\Gamma_{hkl} = \Gamma_{hkl}^0 + \Theta_{hkl} (E_{ads} + \Delta \mu_{H2O}),$$

Where,

$$\Delta \mu_{H2O} = h_{H2O}^0 - Ts_{H2O}^0 + RT \ln\left(\frac{p_{H2O}}{P_0}\right) - e_{H2O}$$

\$ -

14

Structure and Energetics of Anhydrous Surfaces

	(-111) face	(001) face
SE before relaxation (J m ⁻²)	1.460	2.169
SE after relaxation (J m ⁻²)	0.993	1.416
Hf (atom. nm ⁻²)	9.2	7.6
μ_{2} -O (atom. nm ⁻²) ^a	1.8	7.6
μ_{3} -O (atom. nm ⁻²) ^b	6.9	-
N _{Hf-O} (nm ⁻²) ^c	20.6	22.8

(001) Surface has higher concentration of under-coordinated centers and hence, a higher surface energy

Effect of Hydration

	(-111) face		
Coverage (H ₂ O molecule.nm ⁻²)	Molecular	Dissociative	Combination
2.3	-106.6	-60.5	-76.9
4.6	-87.6	-86.4	-101.3
6.9	-75.6	-60.3	-91.6
9.2	-78.8	_	-86.4
		(001) face	
1.9	-94.8	-183.0	-
3.8	-85.0 (107)	-148.5 (150.0)	-111.5
5.7	-98.4	-130.5	-105.7
7.6	-92.7	-108.6 (91)	-101.6
9.5	-	-	95.9

The mode of adsorption is dependent on nature of surface, especially at low coverage.

16

Hydration of m-(001) HfO₂ Surface

QM molecular dynamics used to determine possible configurations of H_2O on m-(001)HfO₂ Coverage (H_2O molecule nm⁻²)

H₂O dissociatively adsorbs at low coverages
 Hydroxylated m-(001) surface is more stable than m-(-111) at low H₂O coverages.

Mukhopadhyay, A., J. Sanz and C. Musgrave, "First-Principles Investigation of Hydroxylated Monoclinic HfO₂ Surfaces," Chem. Mater., 18, 3397-3403, 2006

Department of Chemical Engineering, Stanford University

Hydration of m-(-111) HfO₂ Surface

• Lower H_2O adsorption energies on m-(-111) than on m-(001) surface.

Surface Energies at 10.1 Pa

(001) has greater ability to retain water compared to (-111) surface

H₂O-HfO₂ Phase Diagrams for ALD H₂O Pulse and Purge

Phase diagrams representing the surface energy as a function of T and P_{H2O}.
(-111) face with lower dehydration temperature mainly exhibits Lewis acid-base properties under ALD growth conditions, however the (001) surface retains a significant amount of Brønsted acid sites.

BO Molecular Dynamics ALD - HfCl₄-H₂O System

Initial Interaction through H-bonding

Formation of precursor complex on surface

H₂O Pulse

Formation of 7-coordinated surface complex

Precursor dissociation and stabilization of Cl ion by neighboring protons

21

Conclusions

- m-(-111) most stable surface
- PDOS of bulk indicates hybridization of O 2p and Hf 5d states
- Predominate surface state at -12 eV due to surface O 2s states
- m-(001) surface kinetically stable, probably because of H₂O stabilization
- Water adsorption energies generally decreases with increasing coverage
- Mode of adsorption at low coverage is dependent on nature of surface
- (001) surface can retain higher concentration of OH sites compared to (-111) face
- QMD providing more detailed information of ALD surface chemistry

