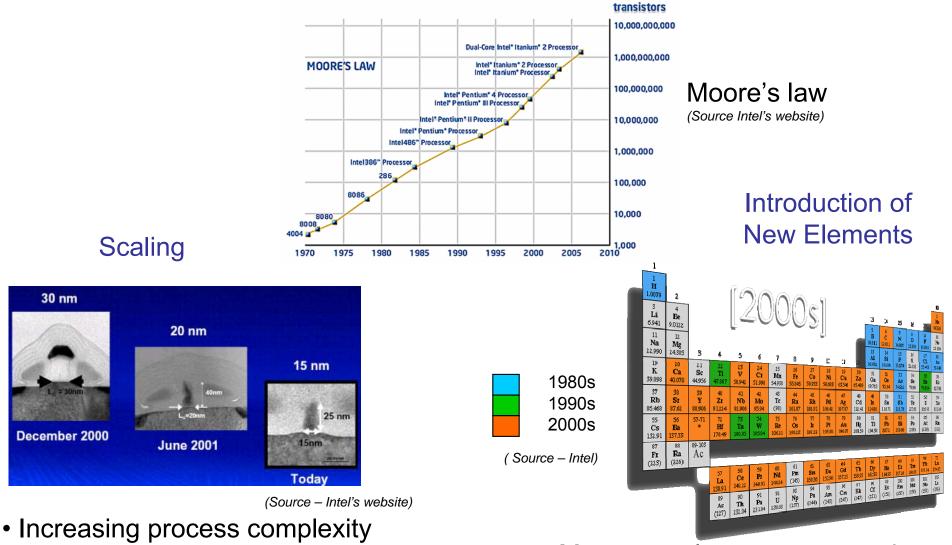
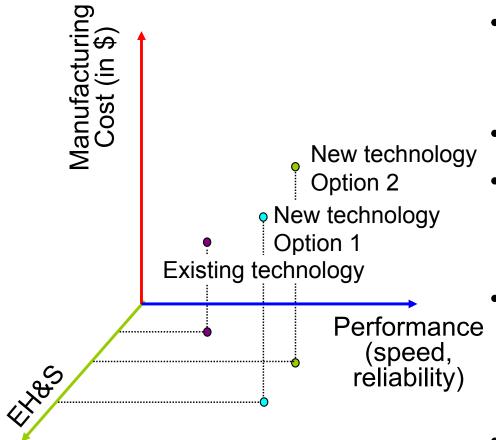
Environmentally Benign Manufacturing of Three Dimensional Integrated Circuits (3D ICs)


Ajay Somani and Duane Boning* Massachusetts Institute of Technology August 23, 2007

Outline

- Motivation and Background
- Environmental Impact Assessment Methodology
- Case Study: MIT 3D IC vs. 2D IC
- Assessment of Alternative Handle Wafer Options
- Summary

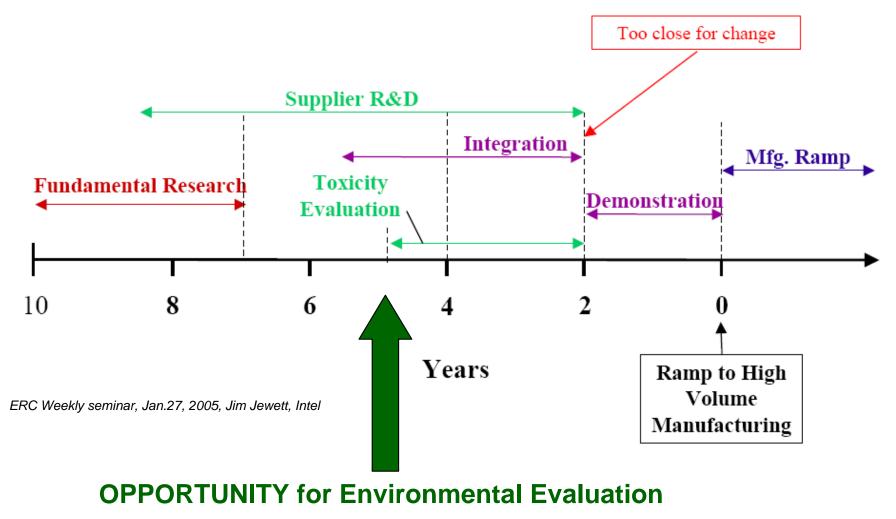
Motivation – Environmental Impact Assessment



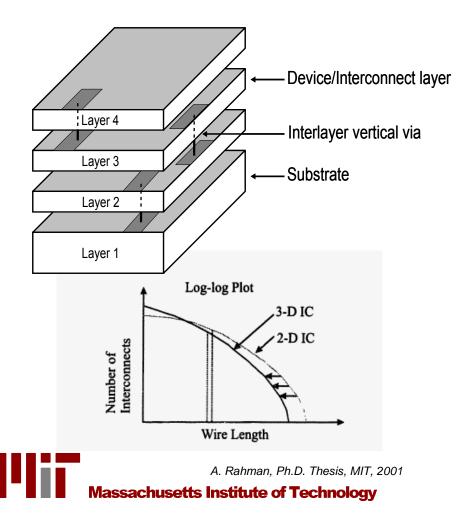
• More energy consumption - fabrication

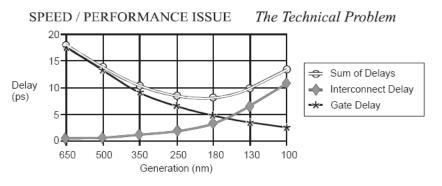
• More rare elements are used

 Limited information about environmental and health impacts


Motivation – Environmental Impact Assessment

- Each semiconductor technology can be mapped on manufacturing cost and performance axis
- Interplay decides future technology
- Need to integrate EH&S as 3rd axis
 - help in decision making
 - avoid surprises, such as lead ban
- As a first step, we focus on evaluating environmental impact
 - health and safety assessment needed in future work
- Goal: environment assessment methodology


Technology Development Cycle



3D ICs at this stage of development

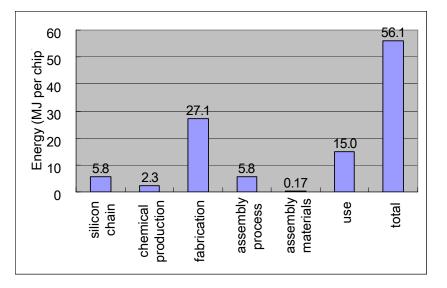
Three Dimensional Integrated Circuits (3D ICs) Motivations and Benefits

A vertical stack consists of multiple device and interconnect layers that are connected together by interlayer vertical vias

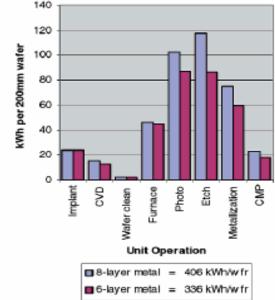
RC Delay vs. Generation

Performance Benefits:

- Narrower interconnect
 length distribution
- Improved chip form factor
- Enables hybrid CMOS
- Enables heterogeneous integration

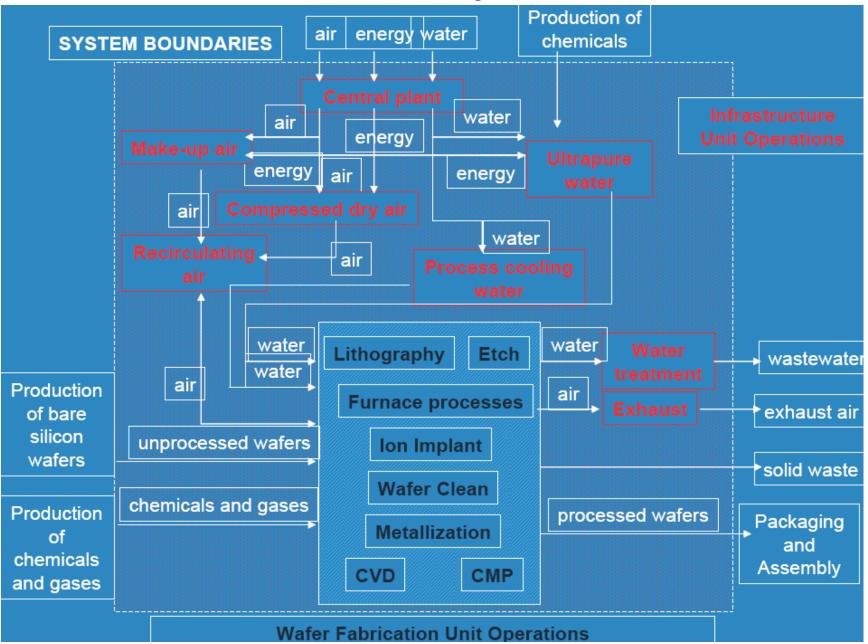

Outline

- Motivation and Background
- Environmental Impact Assessment Methodology
 - LCI for Wafer Fab
 - Assessment Methodology: Six Steps
- Case Study: MIT 3D IC vs. 2D IC
- Assessment of Alternative Handle Wafer Options
- Summary



Life Cycle Inventory (LCI)

- Data based approach for quantifying inputs (energy, materials) and outputs (emissions and wastes)
 - More objective, can be applied to other process flows
- Williams et al. showed that fabrication is the most energy and materials intensive part
- Murphy et al. LCI for wafer fab for 130 nm node and 200 mm wafers
 - Compared 6 and 8 metal layer circuits
 - Energy consumption for 8 metal layers is 406 KWhr/8 in. wafer
- Limitations
 - Studies focused on energy
 - Not transparent, data was confidential
 - Lack assessment component and did not provide guidelines for improving environmental footprint


Eric Williams et al., 1.7 Kilogram microchip: Energy and materials use in production of semiconductor devices, Env. Sci. & Tech.'02

Cynthia Murphy et al., Parametric Inventories for material, energy and emission, Env. Sci. & Tech.'03

LCI for Wafer Fab: System Boundaries

C.F. Murphy, J.P. Laurent, D.T. Allen, "Life Cycle Inventory Development for Wafer Fabrication in Semiconductor Manufacturing", IEEE International Symposium on Electronics and Environment pp.276-281, 2003 9

New Process Based Inventory

- Created in collaboration with N. Krishnan and S. Boyd at Applied Materials
- Collected inventory for all CMOS process
 - Process energy, facilities energy
 - Water (ultra pure for process and process cooling water)
 - Listing 80 chemicals which are not confidential, divided into subgroups of GWGs, VOCs
- Submitted to Journal of Environment Science and Technology
 - Will publish the inventory as supporting information

	Massachusetts Institute of Technology

LINITS in alu	afer wherever possible	<u> </u>							
ONITS IT 9/W	alei wilerevei possibli								
	13	0 nm r	ode 3	00 mm	wafer	6 Jave	er wa	fer	
Film Thickness (A)			130 nm node 300 mm wafer 6 layer wafer Total Time						
Time (s)	55 (71)			225	08.707				36.13851
11110 (0)				220	00.101	-		400	00.10001
		IN				OL	т		
GWG									
CF4				15 9	981286	83		17 3	38392932
CHF3					418287				7741395
C2F6						0			0.863
CH4				164	3.4796	-			0.338
CO2						0		763	7275313
NF3				353	.23819	58		8.25	54029167
C4F6				0.6	508928	57			0.05
	DVA VVA VVA TOMAT THE TE TO TO Second Service (SED) -Creation -Cre	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00 0.00 0.00 <th></th> <th></th> <th>1</th> <th>10</th>			1	10
	omicias Electricity (KWhr) URW Industrial City Water	2.62 61.68 0.00	0.00 0.00 0.00	0.00 0.00 0.00	42.46 7368.26 50515.26	0.00 0.00 0.00	0.00 0.00 0.00	76X 95	

Environmental Assessment Methodology

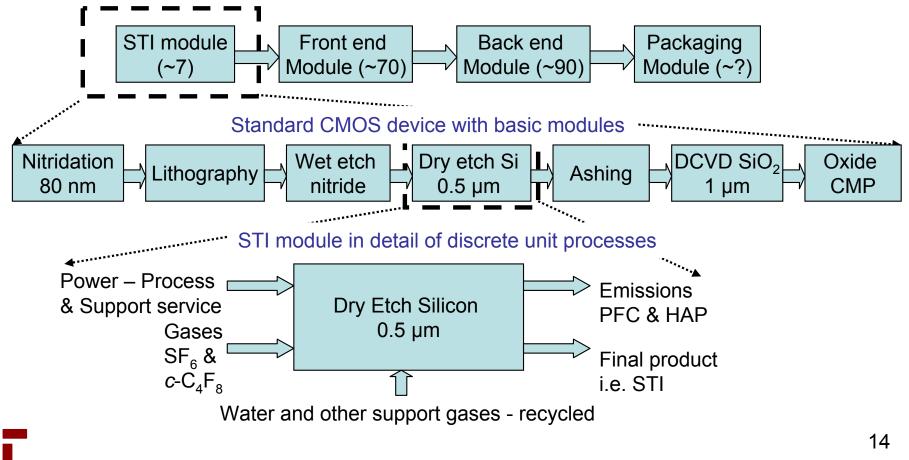
- 1. Identify particular novel silicon process technology to be evaluated
- 2. Identify state of art technology, that is going to be replaced / augmented by novel technology under investigation and generate its environmental footprint
- 3. Define functional unit for comparison (e.g., # of transistors, area)
- 4. Design prototype process flow for novel technology
- 5. Compare environmental impact of alternative process technology to the standard technology, taking into account the functional unit
- 6. Identify and develop critical unit processes which have performance, cost, or environmental issues

Outline

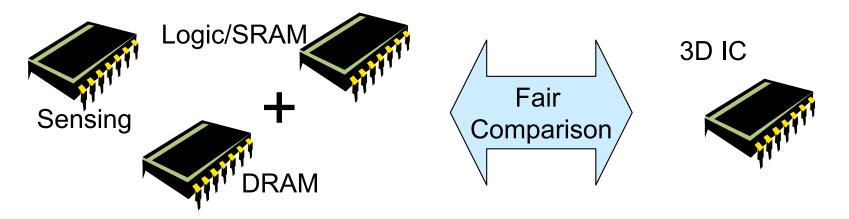
- Motivation and Background
- Environmental Impact Assessment Methodology
- Case Study: MIT 3D IC vs. 2D IC
 - Methodology Application: Six Steps
 - First-order Energy, Water and Chemical Consumption
- Assessment of Alternative Handle Wafer Options
- Summary

1. Why Do We Choose 3D IC?

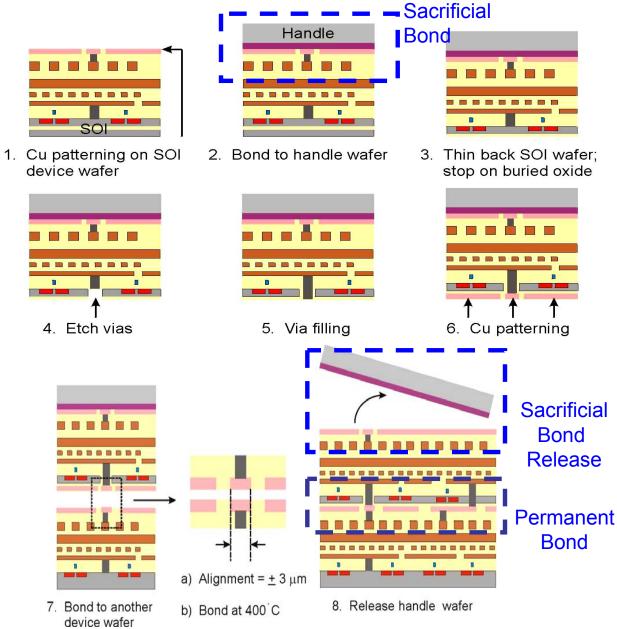
- Technology 4-5 years down the line
- Has various options available
 Bonding, Recrystallization....
 - Wafer to Wafer, Die to Wafer



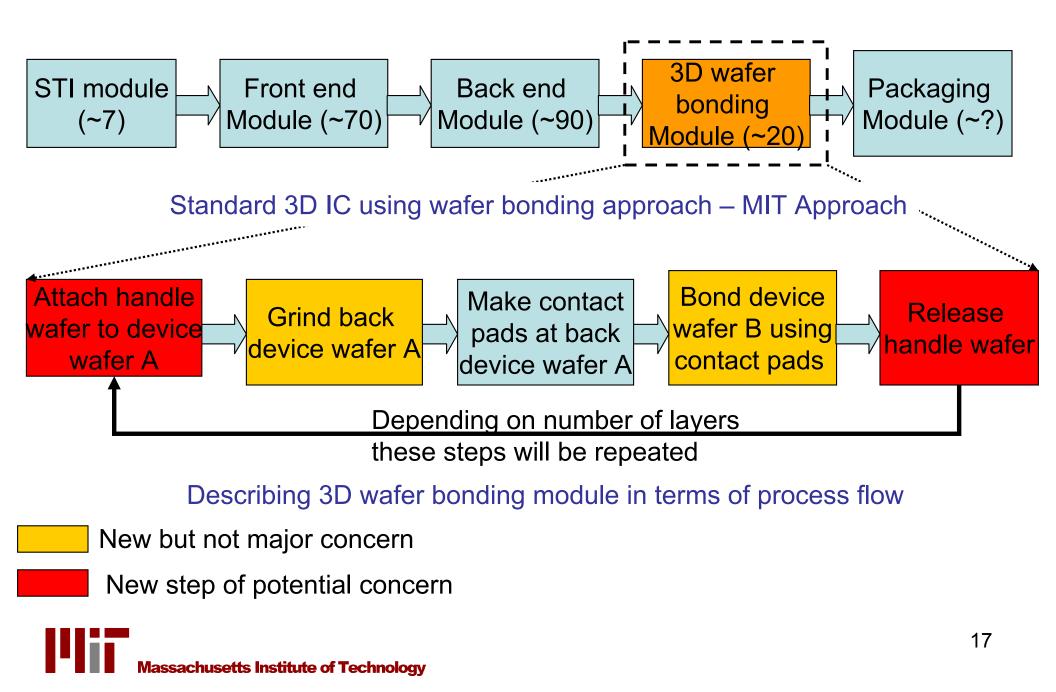
- Advantages along performance axis
 - Substantial existing performance research
- Need to assess environmental impact (and cost) as well


2. Environmental Footprint Standard 2D IC

- Issues: dynamic, extensive materials, various technologies, confidential
- Modular and hierarchical process flow
- Utilize our process inventory


3. Functional Unit : 2D vs. 3D

- Identification of appropriate functional unit is a challenge in comparing 2D vs. 3D technologies
- If packaging changes, comparisons of environment, cost, and performance of packaging are also needed


- Our focus: single chip 2D vs. single 3D chip
 - E.g., system on chip (SoC) that integrates logic and SRAM
 - Perhaps on separate layers in the 3D chip
 - Scope restricted to wafer fab issues; do not address packaging

4. Prototype Considered: MIT's 3D Process Flow

5. Environmental Footprint 3D IC

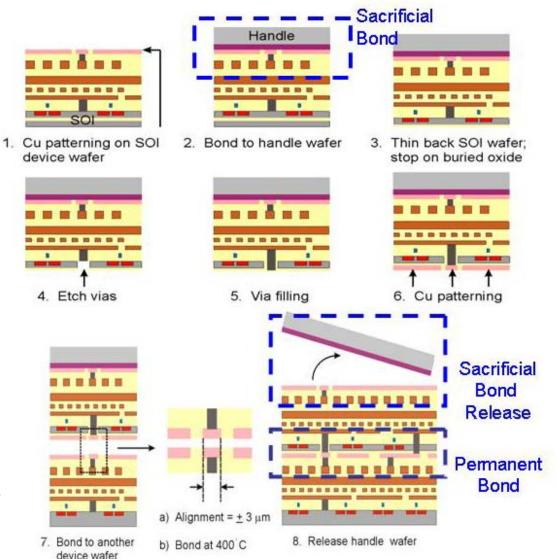
6. 2D vs. MIT 3D Process Step Summary

Unit operation	Unit steps in 2D process flow (for one wafer)	Additional unit process steps in 3D process flow
Photo/stepper/ashing	25	1
Dry Etch	13	2
Wet etch + Clean	31 + 14	3 + 4
CVD	11	1
CMP	14	2
Sputtering AI	1 (0.5 µm for metal 1)	2 (20 µm)
Sputtering Ta/Cu	6	1
Electrodeposition Cu	6	1
Annealing	15	2
Bonding	0	2
Grinding	0	1

Results – First-order Comparison

	Energy Consumption (KWh)	Consi	Water umptio	ո (m³)	Chemical Consumption
		PCW	UPW	ICW	
Adding 1 layer to 3D Stack	340 +	14.7 +	0.6 +	0.1 +	Equivalent to adding 1 more interconnect layer
2D CMOS, 300 mm wafer, 130 nm technology, 6 metal layers	540	26.6	0.96	0.65	Summarized in thesis Appendix A

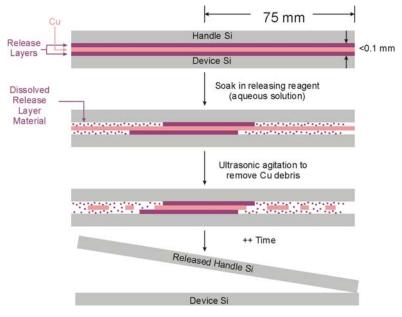
- Novel processes such as bonding and grinding are estimated using process knowledge and literature
- 17 additional standard unit processes consume 40 KWh of energy
- 270 KWh energy and 13 m³ PCW is attributed to the two thick metal sacrificial deposition steps
- Handle Wafer has large environmental footprint


Outline

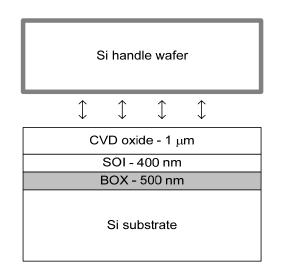
- Motivation and Background
- Environmental Impact Assessment Methodology
- Case Study: MIT 3D IC vs. 2D IC
- Assessment of Alternative Handle Wafer Options
 - Requirements
 - New Approaches
 - Assessment of Handle Wafer Options
- Summary

Handle Wafer Process: Functions and Requirements

- Functions
 - Support wafer during thinning and subsequent processing
 - Provides stackability
- Requirements
 - Bond Strength of Temporary-bond
 - Void Free Bonding
 - Thinning Back Capability
 - Chemical Resistance
 - Thermal Processing Range
 - Ease of Debonding



Previous MIT Approaches


- Al release layer
 - 20 µm AI is deposited on both wafers and etched with HCI
 - Mass diffusion limited
- Smart Cut
 - H₂ implantation on handle wafer
 - Thermal activation to release

Massachusetts Institute of Technology

 Thermally unstable and expensive

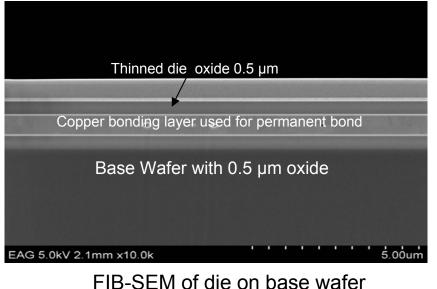
Andy Fan, EECS MIT PhD Thesis 2006

Performance Comparison – Previous Handle Wafer Options

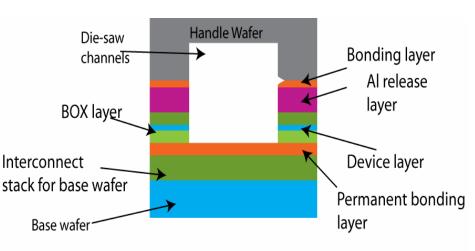
Handle Wafer Approaches	Bond strength	Void Formation	Chemical Selectivity	Thinning- back Capability	Temperature range	Time to debond
Al Release Layer	3 J/m² √	No √	Probably with TMAH ↔	Good ✓ < 1 µm	Good √	Does not release in finite time ×
Smart Cut	2 J/m² √	Few ↔	Good √	Good	Requires processing temp. less than 250°C ×	Good, released in 60 min ✓

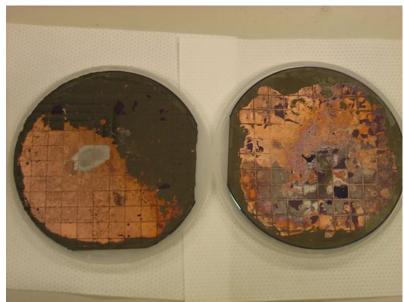
New Approaches for Handle Wafer Processes

- 1. Between-Die Channels
 - Overcome diffusion problem introduce channels in the *device* wafer
 - Laminate structure: Al release layer with copper bonding stack
- 2. Oxide Release Layer
 - Overcome diffusion problem introduce channels in the handle wafer
 - Oxide bonding and release layer
- 3. Alternative Low-Temperature Permanent Bonding
 - Enable permanent bonding at temperature such as 200°C
 - Using copper-indium SLID bonding



1. Between-Die Channel Approach



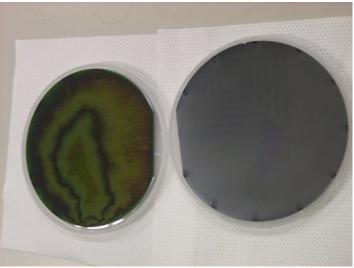

Results for Between-Die Channel on Both Handle and Device Wafer

- Channels etched in handle wafer to also act as diffusion channels
- Channels on handle wafer are 20 µm deep – takes 8 hours to release at bath temperature 60°C in HCI:H₂O ratio 1:1 with intermittent ultra-sound
- FIB-SEM shows that die was transferred successfully

bonded with copper

Released Handle wafer and transferred dies on base wafer in left and right respectively

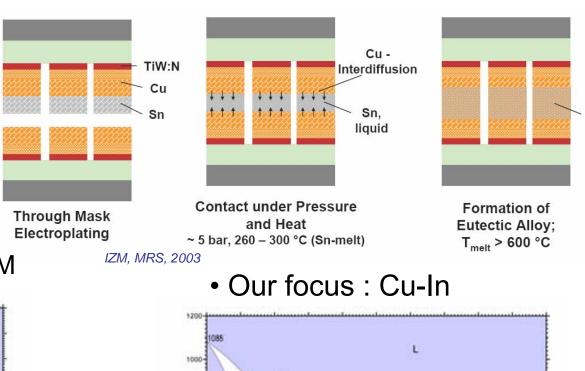
2. Oxide Release Layer Step 1: Handle Wafer Step 3: Low-Temperature Plasma Assisted Oxide Bonding Fabrication Pre-Temporary Bonding Low-Temperature oxide Bonding Handle Waferwith oxide pads Handle Waferwith oxide pads Idea: put channels above whole body of die, not just SOI Device Wafer SOI Device Wafer between die Step 2: Dummy Device Wafer Thinning Wafer Fabrication Handle Waferwith oxide pads Permanent Bonding with Copper Handle Wafer Release sbeq sbixo driwnsteW slbneH sbeq əbixo diiwiəîeW əlbrieH Step 4: Wafer Thinning **SOI Device Wafer Bottom SOI Device Wafer** Step 6: Handle Step 5: Permanent 27 Wafer Release **Copper Bonding** Massachusetts Institute of Technology


Oxide Release Layer Results

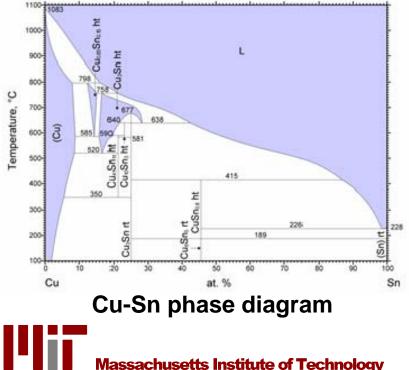
- Wafers on the left show two
 examples of successful release
- Release was conducted and thin layer was transferred to another substrate in 45 min (best time) and 80 min (worst time)
- Final Release time depends on
 - Pattern (pad size and channel), pad size ↑ causes time ↑
 - Channel depth \uparrow causes time \downarrow
 - Processing temperature ↑ causes time ↑
- Concern
 - HF acid highly corrosive

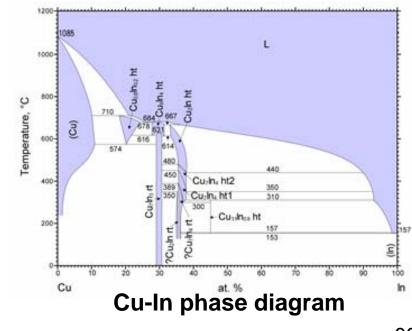
Wafer scale release but nitride was etched away. Handle wafer was 40 μm deep with 80 μm pads and die-saw lines etched. It took 80 min

Successful release with nitride and oxide stack beneath is intact. Handle wafer was 60 μm deep 28 with 80 μm pads. It took 45 min


3. Alternative Permanent Cu-In Bonding

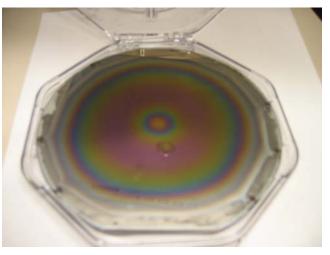
- Motivation: enable low-temperature bonding
 - Provide flexibility or ease in designing handle wafer options
- Solid Liquid Interdiffusion Bonding (SLID)
 - Deposit *elemental stack* for low and high melting point metals on different wafers
 - Bond (at 200°C) under pressure using thermocompression bonding
 - Liquid diffusion creates *intermetallic compound* that is stable at higher temperature



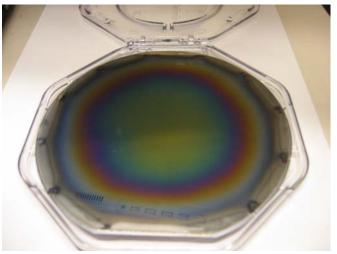

Solid Liquid Inter-Diffusion (SLID)

- Basic sequence of events
 - Wetting
 - Alloying
 - Liquid Diffusion
 - Gradual solidification
 - Solid-diffusion

• Cu-Sn under investigation by IZM

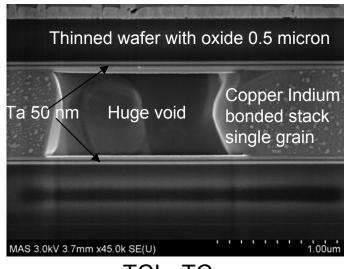

Cu₃Sn

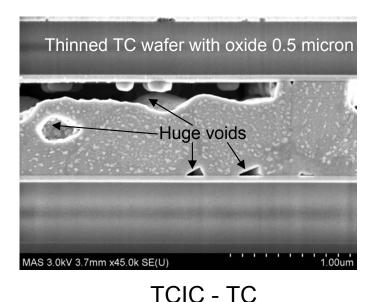
eutectio


alloy

Blanket Bonding Experiments

- E-beam deposition of Cu and In multi-layers
- Two different Cu-In stacks bonded to Ta-Cu (TC) stacks
 - TCI: Ta/Cu/In 50/100/300 nm
 - TCIC: Ta/Cu/In/Cu 50/100/520/80 nm
- Bonded to TC (Ta/Cu 50/300 nm) by thermo-compression with 6000 N force (150 mm wafers) and 200°C, followed by anneal for 4 hours at 230°C
- Successful thinning achieved




TCI – TC After Thinning

Bonding Interface Characterization

- Both films shows voids
 - TCI voids go across the bonding interface
 - TCIC voids are located in the TC wafer
- Grain in both films looks homogeneous
- No apparent bonding interface
- STEM suggests that bonded samples have homogeneous Cu and In – no segregation
- Cu₁₁In₉ intermetallic compound formed

Massachusetts Institute of Technology

Outline

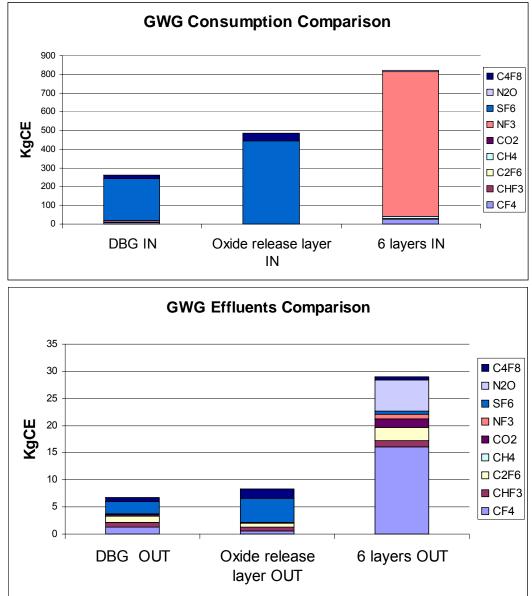
- Motivation and Background
- Environmental Impact Assessment Methodology
- Case Study: MIT 3D IC vs. 2D IC
- Assessment of Handle Wafer Options
 - Performance
 - Cost
 - Environmental Impact
 - Energy and Water Consumption
 - Chemical Consumption and Effluents
- Summary

Performance Comparison

Handle Wafer Approaches	Bond strength	Void Formation	Chemical Selectivity	Thinning- back Capability	Temperatur e range	Time to debond
Smart Cut	2 J/m² √	Few ↔	Good √	Good √ <1 µm	< 250°C, Cu-In bonding at 200°C ↔	Good, released in 60 min ✓
Al Release Layer	3 J/m² √	No √	Probably with TMAH ↔	Good	Good ✓	Does not release in finite time ×
Between-Die Channel	3 J/m² √	No √	Probably with TMAH ↔	Good	Good ✓	Released in 8 hours ↔
Oxide Release Layer	1.6 J/m² √	No √	HF acid highly corrosive ↔	Minimum thickness 10 µm √	Higher temperature difficult to release ↔	Release in 45 min √

Cost Comparison

Handle Wafer Approaches	New Infrastructure	# of process steps with # of mask	Throughput	New processes/ Process complexity	Yield
Smart Cut	Hydrogen implanter, Oxide bonder	6 with no extra mask	High throughput ion implantation	Oxide bonding, H ₂ implantation – expensive	Medium to High
Al release layer	Thick Al sputter, Copper bonder	7 with no extra mask	Very low ~ thick deposition and long release time	20 µm thick Al deposition, Cu bonding	Zero or Negligible
Between- Die Channel	Thick Al sputter, copper bonder	13 with two extra mask	Low ~ thick deposition and long release time	8 µm thick Al deposition, Cu bonding, silicon etch	High, needs development for effective release
Oxide release layer	DRIE silicon etcher, Oxide bonder	8 with one extra mask	Moderate, 2 hr DRIE; can reuse handle wafer	Silicon etch, oxide bonding	Low to moderate, needs more development


Environmental Comparison – Energy and Water

- Al release is the most energy and PCW expensive process, followed by between-die channel approach
- Smart Cut looks most promising in terms of environmental footprint
 - No acid release and no thick sacrificial layer or deep channel etching

Handle Wafer Approaches	Energy Consumption (KWh)	Ultra pure water (m ³)	Process Cooling Water (m ³)	Waste water generated (m ³)
Al Release Layer	296, thick Al deposition 40 micron	0.5, acid release	14.7, deposition and oxidation	~1, acid release, generates water containing AICI ₃
Between- Die Channels	240, thick Al deposition, All 6 layers of IMD and 50 µm silicon etching	0.62, acid release and clean	9.7, oxidation, deposition and etching	~1, acid release, generates water containing AICI ₃
Oxide Release Layer	60, 50 μm of silicon etching	0.73, acid release, activation	2.9, oxidation and etching	~1, waste water from acid and activation
Smart Cut	20, assumed H ₂ implantation is similar to other implantation process	0.43, activation	4.71, oxidation and implantation	~0.5, waste water from activation

Global Warming Gases Comparison

- Consumption and effluents for oxide release layer and between-die channels are compared with 6 metal layer CMOS device, 130 nm technology node, 300 mm wafer
 - Smart cut and Al release layer steps release little GWG
 - Destructive efficiency
 - SF₆ assumed to be 90%
 - *c*-C₄F₈ assumed to be 80 %
- Result: Si etching using Bosch process is not environmentally benign

Summary: Integrated Assessment of Handle Wafer Options

- Al Release Layer no functionality (low-yield) and high environmental footprint
- Between-Die Channels high yield with large environmental footprint and low-throughput (moderate cost)
- Smart Cut high yield, low environmental impact but high cost
- Oxide Release Layer cost and environmental footprint are within limits because of reuse, and performance is moderate (can be improved)

	Al Release Layer	Between-Die Channel	Smart Cut	Oxide Release Layer
Performance	×	\checkmark	\checkmark	\bigcirc
Cost	×	\bigcirc	×	\checkmark
Environmental Impact	×	×	\checkmark	\bigcirc

Outline

- Motivation and Background
- Environmental Impact Assessment Methodology
- Case Study: MIT 3D IC vs. 2D IC
- Assessment of Alternative Handle Wafer Options
- Summary

Summary

- Developed an environmental assessment methodology for evaluating emerging silicon technologies
 - Applied to MIT "back-to-face" 3D IC in comparison to standard 2D IC
 - Identified handle wafer as process which is environmentally nonfriendly and lacking in performance
- Furthered the development of three handle wafer options
 - 1. Between-Die Channels
 - Can be released in 8 hours, satisfy all other requirements
 - 2. Oxide Release Layer
 - Can be released in 45 min, satisfy all requirements but chemical selectivity
 - 3. Alternative Low-Temperature Permanent Cu-In Bonding
 - Can be bonded at 200°C; needs further work to deposit smooth films
- Demonstrated an overall evaluation of competing technologies by comparing these two novel approaches with prior approaches for handle wafers on all three axes – performance, cost and environmental impact

Acknowledgments

- Prof. Rafael Reif, EECS, MIT
- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- Prof. Eugene A. Fitzgerald and Prof. Harry L. Tuller, DMSE, MIT
- Prof. Carl V. Thompson, DMSE MIT
- Chuan-Seng Tan, Andy Fan and Rajappa Tadepalli, recent Ph. D. Graduates from MIT
- Prof. Philip Gschwend and Sarah Jane, Civil and Environmental Engineering, MIT
- Robert E. Jones, Scott Pozder and Ritwik Chatterjee, Advanced Interconnect Group, Freescale, Austin
- Nikhil Krishnan, Sarah Boyd, Applied Materials
- MTL students, especially Prof. Boning Group Students
- Microsystems Technology Laboratories Staff, MIT
- Richard Schalek, NNIN, Harvard
- Libby Shaw, Scott Speakman, Anthony Garrett Reed, CMSE, MIT