

SRC/SEMATECH ERC for Environmentally Benign Semiconductor Manufacturing

Resist-Free Patterning of Low Dielectric Constant Polymer

December 13, 2007

Nathan J. Trujillo

Karen K. Gleason

Structure of This Talk

- Background on low-k materials
- The need for environmentally benign low-k processing
- New low-k precursor for iCVD
- Resistless patterning of low-k materials
 - Microcontact printing for additive polymer patterning
 - SAMs for patterned low-k
 - Resist-free photolithography

Anatomy of an Integrated Circuit

Acquired electric dipole moment per unit volume: Polarization

How does P affect k?

relationship of dielectric constant & polarization $k = 1+4\pi P/E$

relationship of dielectric constant & index of refraction

at low frequency :	k > n ²
at high frequency:	k = n ² (electronic polarization only)

k: How low can you go?

Air to get us there...

Novel Porogens For Low-k

- Porogens provided by Chris Ober's group at Cornell
- Incorporated into V3D3 film through vinyl group and removed by annealing
- Film retention compares favorably to commercially available porogen, Norborene

Need For Environmentally Friendly Low-k

	constant (κ) Low-κmaterials—spin-on and CVD		Minimum emission/waste			75% raw material (chemical)			90% raw material (chemicals)		
IS	Interleve	el metal insulator – bulk dielectric	2.6-3.0	2.6-3.0	2.3-2.7	2.3-2.7	2.1-2.4	2.1-2.4	2.1-2.4	<u>1.8-2.1</u>	<u>1.8-2.1</u>
WAS	Interleve expected	el metal insulator (minimum d) – bulk dielectric constant (κ)	≤ 2.7	≤ 2.7	≤ 2.4	≤ 2.4	≤ 2.2	≤ 2.2	≤ 2.2	≤ 2.0	≤ 2.0
	Technology Node (nm)		80	70	65	57	50	45	40	36	32
	_	Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013

www.itrs.net 2006 ITRS Roadmap

In Short: Need k= 2.1 by 2012 and 90% chemical utilization by 2011!

Attractive ILDs Have...

iCVD Summary

Low-k iCVD Precursor V4D4

- Open siloxane ring for low-k
- Four vinyl groups make ideal for iCVD
- No need for cross linker
- 3-D network from "puckered" ring
- Plasma polymerization gives k as low as 2.5

1,3,5,7-TETRAVINYLTETRAMETHYLCYCLOTETRASILOXANE

Proxy Monomer n-Butyl Acrylate

Poly(butyl acrylate) With TBP Initiator

Deposition rates over 100 nm/min

V4D4 Successfully Polymerized Via iCVD

Substrate Temperature Study

Negative activation energy indicates absorption limited process

Little apparent structural differences between most films

Pressure Effects on Structure

reactor.

17

Thermal Stability: Sample T_{sub}= 50℃

Thickness Retention 84.7% <u>Refractive Index</u> 1.481 1.451 <u>Dielectric Constant*</u>

2.75 2.55

*Correlated from Burkey J. Vac. Sci. (2004) 22 (1)

Thermal Stability: Sample T_{sub}= 65℃

Resistless Patterning Prevents Waste

20

Additively Patterned p(CHMA) Using piCVD

- Micro contact printing to pattern photoinitiator, Michler's Ketone
- 25 micron features 100nm thick in 45 min
- Room temperature deposition
- No autopolymerization with 365nm light

O'Shaughnessy, Baxamusa, Gleason, Chem. Mater., (2007)

Additively Patterned p(CHMA) Using piCVD

- FTIR confirms polymerization took place
- C1 s XPS matches carbonyl and methyl peaks
- Resolution determined by PDMS stamp
- No covalent adhesion to substrate

O'Shaughnessy, Baxamusa, Gleason, Chem. Mater., (2007)

Self Assembly For Resist-Free Patterning

- PS monolayers selfassemble into HCP configuration
- Many publications report methods for creating SAM
- Sputtering usually used for pattering
- Large well-ordered arrays from inexpensive non-conventional lithography

Top Down Helping Bottom Up

- Use of conventional lithography to create large scale orientation
- Eliminates large scale defects
- Drives rational design for hierarchical structures with periodic features
- Can work with various forms of self-assembly

Cheng et al., Adv. Mater. (2006), 18

Additive Polymer Patterning Using Self Assembled Monolayer(SAM) as Mask

Resistless Patterned poly(butyl acrylate)

- Solution cast 1 µm spheres in TritonX/Methanol
- TrichlorovinyIsilane used as coupling agent
- Deposited 1µm film of poly(butyl acrylate)
- Sonication in THF overnight

3...2...1.....Lift-off!

- SEM images show complete lift-off
- Large honeycomb pattern observed
- Feature sizes as small as 150nm
- Withstand repeated solvent rinse

AFM Image of Grafted Pattern

- Very high aspect ratio features
- Height up to 700 nm
- Could not obtain thick grafted film without particles.
- Knudsen diffusion leads to different reaction scheme within SAM domains

Low-k Lift-Off With IPA

- V4D4 Pattern with 1 µm spheres
- Very well-ordered patterns achieved
- Lift-off after sonicating in IPA for 1 hr
- Achieved full lift-off with environmentally friendly solvent

Environmentally Friendly 75 nm Low-k Pattern

- Used 200nm spheres for pattern
- Very well ordered patterns achieved from IPA lift-off
- Smallest features about 75nm wide and about 100nm in height
- Excellent substrate adhesion:10 minute sonication in THF

Resist-Free Photo Lithography

Photolysis of TrichlorovinyIsilane

Hg Lamp: The Cheap Alternative

\$8,000 for XERADEX®

UHV Lamp, 40 W VUV radiation

www.Uvp.com

Hg lamp in house= Free

Less than 1W output in range of interest

Grafting and Photolysis

Environmentally Friendly Photolithography of poly(butyl acrylate)

Conclusion

- Low-k poly(V4D4) successfully deposited via iCVD
- Critical substrate temperature and Pm/Psat at which deposition rate declines
- Low reactor pressure yields highest Si-O cage structure in polymer
- V4D4 films are thermally stable at 400°C
- Dielectric constant below 2.5 possible without porogen
- Additive patterning achieved through microcontact printing
- 75 nm low-k pattern produced by environmentally friendly process

Resist free photolithography possible using 193 nm light

Future Work

- Build test structures to measure k
- Mechanical Characterization of V4D4 blanket film
- Introduce porogens as done with V3D3 in collaboration with Cornell
- Resistless photolithography with smaller features
- Extend to e-beam patterned wafers from Cornell for high resolution features
- Deposit thicker polymer via resistless photolithography patterning (may require crosslinker)

