Challenges of Emerging Nanotechnologies for Low Power High Performances Logics

Wilman Tsai Intel Corporation

NSF/SRC Engineering Research Center for Environmentally

Benign Semiconductor Manufacturing

Feb, 2006

Transistor Scaling and Future Options

New <u>Research</u> Should be Directed Toward 22nm and Beyond

• Environment

- 2 billion transistor chips
- > 25 GHz clock speed
- MOS gate dimensions < 10nm, EOT < 0.5nm
- < 0.8 V operation</p>
- Revolutionary, new Cool Ideas for high speed logic, memory
 - Very low impedance interconnect
 - High speed/low power transistor alternatives
 - Thermal and power delivery solutions
 - Stable, fast memory cell/architecture
- Encourage work on CMOS extensions and novel technologies that are compatible with silicon infrastructure
 - High mobility channel devices, e.g. nanowire, Ge, III-Vs
 - Devices beyond CMOS, with collateral interconnect, memories...

High k-metal gate Si transistor

- Example of high-performance CMOS transistors on bulk-silicon with high-K/metal-gate
 - Correct V_{TH}'s, high-mobility, low gate leakage

R. Chau etal., EDL, 25, p408 (2004)

Planar vs non-Planar Si transistor

R. Chau, INFOS, Leuven, 6-2005

Device Evolution and Challenges

R. Chau, VLSI 2005

Why IIIV compound semiconductor ?

	Si	GaAs	In _{.53} Ga _{.47} As	InAs	InSb
Electron Mobility (cm ² V ⁻¹ s ⁻¹) n _s =1x10 ¹² /cm ²)	600	4,600	7,800	20,000	30,000
Electron Saturation Velocity (10 ⁷ cm/s)	1.0	1.2	0.8	3.5	5.0
Ballistic Mean Free Path (nm)	28	80	106	194	226
Energy Band-gap	1.12	1.42	0.72	0.36	0.18

Channel Material Properties at 295K

InSb shows the highest room temperature electron mobility, but also the lowest energy band-gap

High mobility channel devices using III-V compound semiconductor

III-V (InSb, InAs) devices show significant CV/I improvement over Si III-V devices have >50X higher effective n-ch mobility than Si and operated at low VCC = 0.5V

III-V Nanoelectronics: Low Energy-Delay Product

- Of all the III-V quantum-well systems, InSb QW has the lowest energy-delay product [highest electron mobility, lowest band gap, lowest V_{CC} (0.5V)]
- InGaAs QW is also important for low V_{CC} (0.5V-0.7V)

Low power-high performance III-V FET Devices

Top-Down Approach: conventional litho/pattern techniques

World's first depletion-mode InSb NMOS research transistors demonstrated with 200GHz cut-off frequency (FT) achieved at Vcc = 0.5V

Challenges of Heterogeneous Integration of IIIV/Si

- Self aligned architecture to minimize parasitics and footprint
- Lg Scalability
- IIIV epi growth on 300 mm Si
- P channel device (strain in IIIV ?)
- Low Conduction Band density of states ?
- High k on IIIV (last but definitely not least)

Logic Suitability of InGaAs HEMT MIT - J. Alamo

 III-V QW devices show very high performance at low Vcc (0.5V),
 compare favorably with 65 nm

Si CMOS

D. Kim, J. Alamo etal., IEDM 2006

@V _{dd} =0.5 V	L _g (nm)	l _{on} (mA/mm)	l _{leak} (nA/mm)	S (mV/dec)	DIBL (mV/V)	V _t (V)
InGaAs HEMT	60	370	300	88	93	-0.02
65 nm CMOS (low power)	55	150	300	90	80	0.5

For the same I_{leak}, 60 nm InGaAs HEMT yields 45% more I_{ON} than 65 nm CMOS ¹²

Logic Suitability of InGaAs HEMT MIT - J. Alamo

 III-V QW devices show very high performance at low Vcc (0.5V), compare favorably with 65 nm Si CMOS
 ¹³
 R. Chau, DRC Conf, 6-2006

Grand Challenge in III-V Nanoelectronics: Compatibility of III-V and High-K/Metal-gate Stack

Fermi level pinning at insulator can turn off underlying enhancement mode channel and increases large resistances, it is critical to understand the underlying mechanism....

DFT Calculation of DOS and PDOS for O₂/GaAs

arsenic

A. Kummel, UCSD

DFT Calculation of DOS of Ga₂O/GaAs Interface

Ga₂O/GaAs: The oxygen bonded Ga has no states in the bandgap

A. Kummel, UCSD

STS (dl/dV)/l/V Studies to show Fermi level pinning and unpinning

•O₂ or O dosing pins the Fermi level. The OV position is midgap for both n-type and p-type wafers

•The Ga₂O deposition leaves the surface unpinned. The OV position moves from the valence to the conduction band edge when comparing p-type and ntype wafers

A. Kummel, UCSD₈

Ga2O & In2O on InGaAs(100)

A. Kummel, UCSD

• DFT shows that Ga2O and In2O on InGaAs(100) to be un-pinned. STM experiments in progress.

Ga₂O₃(Gd₂O₃) and JVD (MAD) Si₃N₄ on InGaAs Tsinghua- M. Hong, J. Kwo, Yale – T.P. Ma, Intel- J. Zheng

In-situ Fabrication: UHV Integrated MBE IIIV-high k

Fermi Level Pinning Issue

Fermi level control options:

Control of interface atomic structure (e.g. "good" Ga₂O)

From Kummel, et al., JCP, 2003

Prevention of interface oxidation (e.g. passivation with Si)

approach 1

1. MBE *in-situ* passivation with α -Si (SUNY):

- MBE of α -Si near room temperature (high As content in a-Si)
- Si remains amorphous even at high temperatures (up to 800°C)

Published: S. Oktyabrsky, V. Tokranov, M. Yakimov, R. Moore, S. Koveshnikov, W. Tsai, F. Zhu, and J.C. Lee, "High-k gate stack on GaAs and InGaAs using in situ passivation with amorphous silicon." Materials Sci. Eng. B, **135** 272-276 (2006).

High-k Deposition Options:

MBE GaAs and in-situ a-Si depo

GaAs with MBE Si and *ex-situ* HfO₂ gate stack

Published: S. Oktyabrsky, V. Tokranov, M. Yakimov, R. Moore, S. Koveshnikov, W. Tsai, F. Zhu, and J.C. Lee, "High-k gate stack on GaAs and InGaAs using in situ passivation with amorphous silicon." Materials Sci. Eng. B, **135** 272-276 (2006).

Role of α -Si in preventing Fermi level pinning

Published: S. Oktyabrsky, V. Tokranov, M. Yakimov, R. Moore, S. Koveshnikov, W. Tsai, F. Zhu, and J.C. Lee, "High-K gate₂stack on GaAs and InGaAs using in situ passivation with amorphous silicon." Materials Sci. BingdBig 3512793276 (2006).

Role of α -Si in preventing Fermi level pinning

S. Koveshnikov, W. Tsai, I. Ok and J.C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, "Metal-Oxide-Semiconductor Capacitors on GaAs with High-k Gate Oxide and Amorphous Silicon Interface Passivation Layer." Appl. Phys. Lett., 88, 02210

Scaling of *in-situ* α -Si and *ex-situ* HfO₂

 α -Si scaling (10nm HfO₂)

ex-situ HfO₂ by PVD in Ar/O₂ plasma
PDA at 600°C/5min in N2
TaN as a metal gate

Minimum Si Cap thickness to prevent Fermi level pinning is ~1.5 nm

S. Oktyabrsky, V. Tokranov, M. Yakimov, R. Moore, S. Koveshnikov, W. Tsai, F. Zhue and J.C. Lee, Materials Sci. Eng. B, **135** 272-276 (2006).

HfO₂ scaling (1.5 nm Si)

Hysteresis dependence on HfO₂ thickness in n-MOSCap

- k-value of the HfO₂ gate oxide ~21-22
- Oxidized Si is a part of gate stack

Hysteresis increases with HfO₂ thickness

Alternative High-k dielectric to reduce oxide charge

Published: F. Zhu, S. Koveshnikov, I. Ok, H.S. Kim, V. Tokranov, M. Yakimov, S. Oktyabrsky, W. Tsai and J. C. Lee, "Enhancement and Depletion-mode GaAs N-MOSFETs with stacked HfO2/Y2O3 gate dielectric," Device Research Conference, 83 (2006)

HfO₂

 $Y_{2}O_{3}$

HfO_2/Y_2O_3

Reduced hysteresis for Y2O3 based High-k

•Negligible hysteresis suppressed charge trapping occurring in $HfO_2/Y_2O_3high-\kappa$ gate stack.

Our approach 2:

2. PVD ex-situ passivation with Si, Ge, or Si/Ge (UT):

- Chemical passivation of III-V with (NH₄)₂S
- PVD of Si or Ge at 400°C
- PVD High-k deposition without exposure to air

•Various interface layer (a-Si, SiGe, Ge) have been shown to un-pin IIIV surfaces. •Ge IPL: EOT of ~ 11Å and leakage current ~ 10^{-6} A/cm² with 70Å thick HfO₂ layer. •self aligned inversion n and p HfO2-GaAs MOSFET with low Dit, ~5% frequency dispersion with 900C PMA demonstrated.

EOT vs HfO2 thickness

ALD high k on IIV- Termination/Passivation UCSD: A. Kummel, Stanford: J. Harris, Intel: N. Goel

- On InAs(100)-4x2, filled state (DOS) STM shows Cl bonds to the In-In row dimers – dark spot in filled state STM
- Empty state STM shows Cl doesn't etch the InAs(001)-4x2 –empty state STM looks clean
- Cl termination may be beneficial for initiating ALD.

Cl/InAs(100)-4x2, In-rich reconstruction

Winn, Shin, Kummel/ UCSD : Cl/InAs(001)-(4x2)

ALD high-κ dielectrics

- ALD dielectric deposition on *exsitu* chemically precleaned III-V surface is attractive and relatively easier to integrate into current production facility
- Low D_{it}, hysteresis and frequency dispersion needed
- ALD dielectrics (eg: Al₂O₃ and HfO₂) integration on III-V samples is feasible with optimized precleaning techniques and conditions like annealing
 N. Goel, W. Tsai, et. al. Appl. Phys. Lett. 89, 163517 (2006)

Un-pinned InGaAs interface with ALD HfO2

Un-pinnind SiN/GaAs Interface for Enhancement-Mode MISFET T.P. Ma - Yale , Intel: J. Zheng

GaAs MIS capacitor; device area: 8.1×10^{-5} cm²

Fig. 2 Quasi-static and multifrequency CV on n type GaAs MIS capacitor, device area: 1.26×10^{-4} cm² 33

Weipeng Li, TP. Ma et al, SISC 2005

Questions ?

How About Hole Mobility and P-ch FET ?

- III-V materials show hole mobility comparable to Si
- Improve hole mobility in III-V via compressively strained III-V quantum wells and/or other means (???)
- Find the right p-ch FET using other materials for the CMOS (?)

Strained InGaSb quantum wells for IIIV p-FET NRL-B. Boos, B. Bennett

Klem et al., JEM **22**, 315 (1993)

Challenges of Germanium Devices

- Substrate/Dielectric Interface Passivation and High-k Compatibility
 - □ Differences between ALD, PVD, and MBE high-k?
 - Sufficient fundamental understanding on the atomic scale?
- NMOSFET Demonstration
 - Practical or fundamental barrier?
 - Ge PMOS + III-V NMOS?
- Short Channel Device Demonstration
 - Detrimental BTBT in short Lg with low Eg?
 - □ Hole mobility gain in long Lg repeatable in short Lg?

High-k on Ge Interface Engineering

Proper interface engineering should be exercised to optimize performance (e.g. NH₃, SiH₄, PH₃, AIN etc.)

(Whang et al., IEEE IEDM, 307 (2004))

M. Caymax et al. / Materials Science and Engineering B xxx (2006) xxx-xxx

ig. 4. x-TEM images of HfO2 layers on Ge, deposited by MOCVD, ALD and MBD. The interfacial layer thickness is also indicated.

M. Caymax etal, e-MRS, 06

• Si passivation \rightarrow major improvement

Better EOT Scalability vs. High-k on Si

Thinner interfacial layer achievable with the same high-k gate stacks on Ge

(Yamata et al., JJAP, 44, 2323 (2005))

(Kita et al., APL, 85, 52 (2004))

⁽Van Elshocht et al., APL, 85, 52 (2004))

Facts About *N*-type Dopants in Ge

Lower solid solubility for *n*-type dopants in Ge than in Si
 P (~ 2×10²⁰ cm⁻³), As (~ 1×10²⁰ cm⁻³), and Sb (~ 1×10¹⁹ cm⁻³)

□ Higher dopant diffusivities in Ge than in Si

P-dopant diffuses much slower than n-type dopants, opposite trends vs. Si

(Dunlap, Phys. Rev., 94, 1531 (1954))

Fundamental Issues of Ge N-MOSFETs

Key results: Poor Ge n-FET results explained: (i) poor n-dopant activation due to solid-solubility limit, and (ii) S/D junction over-dosage

Key results: Higher D_{it} near the conduction band edge for different dielectrics **Recommendation:** Consider buried-channel structures

Stanford – K. Saraswat

Ge NFET: Progress and Understanding

Drive-Current Enhancement in Ge n-Channel MOSFET Using Laser Annealing for Source/Drain Activation

> Qingchun Zhang, Jidong Huang, Nan Wu, Guoxin Chen, Minghui Hong, L. K. Bera, and Chunxiang Zhu, *Member, IEEE*

• Performance enhancement from novel anneal method

Fig. 5. Extracted electron mobility as a function of the effective electricat field for Ge nMOSFETs with LA and RTA S/D activation as well as a HfO_2/Si control device.

Fig. 1. Sheet resistance (Rs) variation after LA with different laser energies.

43

The Electrical Properties of HfO₂ Dielectric on Germanium and the Substrate Doping Effect

Weiping Bai, Nan Lu, Andrew P. Ritenour, *Member, IEEE*, Minjoo Larry Lee, Dimitri A. Antoniadis, *Fellow, IEEE*, and Dim-Lee Kwong, *Senior Member, IEEE*

• influence of substrate type (high defects maybe extrinsic, due to interaction)

Fig. 10. C-V characteristics at 10 kHz, 100 kHz, and 1 MHz measurement frequencies for the devices on different types of substrates: (a) n-type; (b) low doped p-type; (c) high doped p-type; and (d) higher doped p-type. HfO₂ was deposited by CVD with SN treatment.

Surface-Channel Ge P-MOSFETs

MIT- A. Ritenour, D. Antondias, NCSR- A. Dimoulas Intel- R. Lei, W. Tsai

> • Demonstrated EOT ~ 8 Å with QM correction; ~ 2x hole mobility enhancement over HfO₂/Si control Issues: ~ 4x expected, possibly due to high D_{it}

Appl. Phys. Lett. 2006

- Ge pMOS mobilities up to 358 cm²/Vs at 12 Å EOT with a gate leakage less than 0.01 A/cm² at V_t + 0.6 V. (6 ML of Epi-Si)
- High performance Ge pMOS transistors with L_g from 10 to 0.125 μ m. (future target L_g to 50 nm) 45

IMEC-M. Heyns, Intel-D. Brunco, P. Zimmerman

Key results: Sub-micron GOI n- and p-FETs demonstrated; high drive current in p-FET

Ge Heterostructure MOSFET to improve transport and electrostatics, Stanford: K. Sarawat

Key results: Strained QW Si/SiGe/Si channel p-FET demonstrated with 4x hole mobility boost

Strained-Ge Bulk PMOS on Relaxed Si

Krishnamohan, Krivokapic, Uchida, Nishi and Saraswat, IEEE Symp. on VLSI Tech., June 2005.

SEMATECH Results on Strained Quantum Wells

ld-Vg as function of Ge %

Source: P.Majhi SEMATECH/Intel

Low loff while maintaining high mobility demonstrated in strained QW's

Summary

 Non-Si channels is critical to CMOS extension and will require a collective efforts within universities, research consortia and device communities to address the various fundamental challenges. SRC Nonclassical CMOS Research Center

Materials Structures and Devices Focus Center

2006 MSD Focus Center Theme II Kickoff Workshop

imec

IMEC and RIBER collaborate on Ge and III-V devices for the sub-22nm node

17-05-2006 - Rueil-Malmaison, France - Leuven, Belgium -- Riber, a world-leading supplier of MBE products and services to the compound semiconductor community, joins IMEC's Industrial Affiliation Program (IIAP) on Germanium (Ge) and III-V devices for CMOS beyond the 22nm node. The availability of a unique AUDEN L. I.

Compound Semiconductor on Si

Accelerating the next technology revolution.