Beam Studies of Ultra Low-K Film Damage

Mark Goldman and David B. Graves

University of California, Berkeley

Project Motivation

- As the density of transistors on semiconductor devices increases, technological barriers impede their performance
- New materials help overcome these barriers, but processing remains an issue
- Current processing techniques degrade the properties of new materials, making them perform only marginally better than old ones

Technological Barriers

- More transistors are being put on wafers, forcing current device sizes to shrink
 - Denser metal lines increase metal-metal capacitance
 - Thinner metal lines increase wire resistance
- Digital switching speed is dependent on the product of metal line resistance and metal-metal capacitance:

$$RC \propto
ho_{met} rac{k \epsilon_o L^2}{t_{met} t_{dielectric}}$$

Solving the Metal Line Capacitance Dilemma

- Decreasing the capacitance between metal lines requires an insulator with a k lower than that of SiO₂, but finding a replacement is difficult...
- SiO₂ has great chemical and mechanical stability due to strong individual bonds and high bond density...
- But the strongest bonds are often the most polarizable (=higher k), and high bond density also increases k

A Polymeric Solution?

- Polymers can have much lower k than SiO₂
 - But they have poor thermal and mechanical stability unless double and triple bonds are incorporated
 - But double and triple bonds increase k...
 - Pores can be introduced to decrease density, decreasing k
 - Dopants can be added to decrease k

 This research focuses on a porous, MSQbased ultra low-k polymer

Back to RC-Time Delay

$$RC \propto
ho_{met} rac{\mathcal{E}_{dielectric} L^2}{t_{met} t_{dielectric}}$$

- As metal line dimensions shrink, their resistance increases, requiring the need for lines of lower resistivity
- Metallization has switched from Al(Cu) ($\rho = 3.3 \ \mu\Omega$) to Cu ($\rho = 1.9 \ \mu\Omega$)

More Complications

 The move to Cu adds complexity in processing, as Cu cannot be etched in dry processes

- (Dual) Damascene process for metal wire formation

Dual Damascene/Low-K Compatibility Issues

- Photoresist can accumulate in porous ILDs, raising K
- With SiO₂, photoresist stripping can be easily done in O₂ plasma, but this will damage new ILDs
 - O₂ plasma will remove carbon from dielectric, raising k

Processing Chemistries

- Widely known that oxygen plasma destroys dielectric properties of methyl-doped low-k films
 - What can we learn about the degradation?
 - What about nitrogen?
 - Other chemistries?
 - What effect do ions have on the bond structure of the films?
- What conclusions can we draw from beam studies of these films?

Experimental Setup

Experimental Setup (top view)

Analysis Techniques

- Main technique is FTIR
 - IR beam is transmitted through sample, and chemical bonds absorb IR light at different wavelengths
 - Spectrum of background Si wafer subtracted off, leaving low-k spectrum
 - Some bonds are more active than others, so comparing the absolute intensities not useful– need to compare relative intensities
 - Peak shifting may occur depending on the environment of the bond

Unprocessed Low-k Film FTIR Spectrum

Experimental Results

14

Wavenumber (1/cm)

Diffusion and Reaction of Oxygen Radicals in Low-k Films

• Peak intensity is proportional to number of Si-OH bonds: indicator of increasing damage.

Deal-Grove Analysis of Oxygen-Induced Damage

Peak intensity (~3000 cm-1) vs. fluence

Deal-Grove Analysis of Oxygen-Induced Damage

- Assume constant radical flux
- Assume that peak intensity is proportional to the number of bonds through the film bulk
 - Convert peak intensity to a methylated (or demethylated) film thickness
- Plot of demethylated film thickness vs. time^{1/2} is approximately linear at longer times

Deal-Grove Analysis of Oxygen-Induced Damage

In Deal-Grove model, x²≈Bt, where B is the parabolic rate constant,

$$B = \frac{2D_{eff}C^*}{N_i}$$

- In our case, B comes from the slope of demethylated thickness vs. time^{1/2} linear fit
- N_i is density of reactive sites
- C^{*} is surface concentration of radicals
- Find that D_{eff}≈10⁻² cm²/s

Comparison of Different Radical Chemistries

 At approximately equal fluences, damage trend is

19

What Does This Mean?

- Increased –OH peak intensity means more water uptake → higher dielectric constant
- Decreased $-CH_3$ peak intensity means carbon depletion \rightarrow higher dielectric constant
- Widely known that oxygen-plasma ashing damages low-k films-- less experimental data on nitrogen, and no serious studies of the role of NO have been done

What Role Do lons Have?

 Shown that radicals damage low-k films, but what about ions? Does ion mass matter? Fluence?

Unprocessed Film

Xe+ 2.55x10¹⁷/cm²

Ar+ 2.34x10¹⁷/cm²

Wavenumber (1/cm)

Conclusions

- What is happening?
 - Oxygen radicals diffuse into the low-k film, creating a carbon-depleted layer front that moves downward in the film
 - In NO damage, the NO reacts with nitrogen to form N₂ and O, and the O attacks the methyl groups
 - Nitrogen radicals do damage the film slightly, much less than similar fluences of oxygen
 - Ions do not penetrate into the film- they damage only the very top layer

Future Work

23

- Add separate source of NO to beam system; test effects of NO with and without N from radical source (in progress).
- Study synergistic effects of simultaneous and sequential radical and ion beams (in progress)
- Use NH₃ in radical source. Characterize beam and measure damage. (in progress)
- Explore spin-on low k films for use on quartz crystal microbalance: QCM powerful tool in beam system. (proposed)
- Explore post-damage processing to test reversibility of damage. (proposed)
- Explore effects of electrons (and/or photons) in damaging low k films. (proposed)