Non-destructive gold removal from germanium nanowire samples

Joshua B. Ratchford¹, Irene A. Goldthrope², Jacob H. Woodruff¹, Paul C. McIntyre², Christopher E.D. Chidsey¹

Department of Chemistry, Stanford University
Materials Science Department, Stanford University

Outline

introduction

- GeNW growth from gold nanoparticles
- effect of gold in germanium and silicon processing
- gold removal procedure
- chemical characterization of GeNW surfaces before and after gold removal
- effectiveness of the gold removal procedure
- conclusion

- Non-destructive gold removal from the tips of GeNWs
- May be useful for planar Si and Ge surfaces

Environmental impact of GeNW electronic materials

- GeNW in-situ growth reduces process waste of expensive bulk materials
- single crystal growth at lower processing temperature
- unknown semiconductor manufacturing process integration of gold cataylzed GeNWs

Outline

- introduction
- GeNW growth from gold nanoparticles
- effect of gold in germanium and silicon processing
- gold removal procedure
- chemical characterization of GeNW surfaces before and after gold removal
- effectiveness of the gold removal procedure
- conclusion

Gold catalyzed crystal growth from precursor gas

R.S. Wagner, W.C. Ellis Appl. Phys. Lett. 4 89, (1964)

Epitaxial Growth of GeNW from gold nanoparticles on Si <111>

GeNW grown by heating linker free 40 nm gold colloids to 400°C for 2 minutes followed by 280° C for 18 minutes with 0.430 Torr GeH₄(g) and 29.6 Torr H₂ (g).

Woodruff, J. H.; Ratchford, J. B.; Goldthorpe, I. A.; McIntyre, P. C.; Chidsey, C. E. D.; *Nano Lett.*, 2007; 7(6); 1637-1642.

Epitaxial Growth of GeNW from gold nanoparticles on Si <111>

Woodruff, J. H.; Ratchford, J. B.; Goldthorpe, I. A.; McIntyre, P. C.; Chidsey, C. E. D.; *Nano Lett.*, 2007; 7(6); 1637-1642.

High Density Cross-Point Memory with GeNW Diode

Yuan Zhang, et.al. "An Integrated Phase Change Memory Cell With Ge Nanowire Diode For Cross-Point Memory" presented 13 Jun. 2007 at 2007 Symposium on VLSI Technology, Kyoto, Japan.

Cross-Point Memory Cell Selection

Without Diode

With Diode

Yuan Zhang, et.al. "An Integrated Phase Change Memory Cell With Ge Nanowire Diode For Cross-Point Memory" presented 13 Jun. 2007 at 2007 Symposium on VLSI Technology, Kyoto, Japan.

GeNW diode

- In-situ phosphorus-doped Ge nanowire standing on p-type Si(111) substrate.
- wafer level processsing
- GST-GeNW diode memory cell has ON/OFF ratio =~100

Yuan Zhang, et.al. "An Integrated Phase Change Memory Cell With Ge Nanowire Diode For Cross-Point Memory" presented 13 Jun. 2007 at 2007 Symposium on VLSI Technology, Kyoto, Japan.

Outline

- introduction
- GeNW growth from gold nanoparticles
- effect of gold in germanium and silicon processing
- gold removal procedure
- chemical characterization of GeNW surfaces before and after gold removal
- effectiveness of the gold removal procedure
- conclusion

Recombination-Generation Processes in Si

- Gold introduces midgap states into the silicon and germanium bandgaps increasing the rates of electron-hole recombination and thermal generation
- Level closest to midgap is most efficient for recombination-generation processes

Gold Solubility in Si and Ge

- Ge: Bracht, H., Stolwijk, N.A., Mehrer, H.: Phys. Rev. B 43 (1991) 14465.
- Si: Boit, C., Lau, F., Sittig, R.: Appl. Phys. A 50 (1990) 197.

Outline

- introduction
- GeNW growth from gold nanoparticles
- effect of gold in germanium and silicon processing
- gold removal procedure
- chemical characterization of GeNW surfaces before and after gold removal
- effectiveness of the gold removal procedure
- conclusion

Gold removal from GeNW samples

a) as-grown GeNW

b) gold removed GeNW with triiodide (aq)

c) gold removed GeNW with triiodide-HCI (aq)

Woodruff, J. H.; Ratchford, J. B.; Goldthorpe, I. A.; McIntyre, P. C.; Chidsey, C. E. D.; *Nano Lett.*, 2007; 7(6); 1637-1642.

Chemistry of gold removal process

•The overall chemical reaction for the gold removal is expected to be:

 $2 \operatorname{Au}(s) + I_3^{-}(aq) + I^{-}(aq) \rightarrow 2 \operatorname{AuI}_2^{-}(aq)$

• triiodide etch concentration 1.2% I₂, 30% KI (Transene)

 HCI(aq) prevents GeNW surface oxidation and leaves the GeNW surface CI terminated

Adhikari, H., McIntyre, P.C., et.al."Photoemission studies of the passivation of germanium nanowires <u>Applied Physics Letters</u> 87(26):263109 Hanrath, T., and B.A. Korgel. "Chemical surface passivation of Ge nanowires "<u>Journal of the American Chemical Society</u> 126(47) 15466-15472

Ge/Si core-shell nanowires

- Ge core because carrier mobilities are higher than in Si, for p-type conduction, and constrains carriers within the Ge core
- Si shell because SiO₂ is a stable, high quality surface passivation

Gold tips of GeNWs and residual gold on substrate grow SiNWs

585°C, P_{tot} = 5 Torr (0.35 Torr SiH₄ with H₂ carrier gas)

At T > 550°C for a crystalline Si shell, gold diffuses into nanowire structure

diffused gold -

T > 550°C is need for crystalline Si shell deposition

585°C, P_{tot} = 5 Torr (0.35 Torr SiH₄ with H₂ carrier gas)

Optimal process for coreshell

- 1. Untapered GeNW growth from 20 nm catalysts: 370°C/300°C
- 2. HCl immersion (5 min), triiodide-HCl gold etch (10s), HCl rinse
- 3. 10 min anneal @ 600° C in H₂
- 4. Si deposition: 690°C, P_{tot} = 4.5 Torr, P_{SiH4} = 0.11 Torr with H₂ carrier gas, 60s

Outline

- introduction
- GeNW growth from gold nanoparticles
- effect of gold in germanium and silicon processing
- gold removal procedure
- chemical characterization of GeNW surfaces before and after gold removal
- effectiveness of the gold removal procedure
- conclusion

Gold removal from GeNW samples

a) as-grown GeNW

b) gold removed GeNW with triiodide (aq)

c) gold removed GeNW with triiodide-HCI (aq)

One needs to characterize the chemical composition of GeNW surfaces for Ge/Si core shell applications

Woodruff, J. H.; Ratchford, J. B.; Goldthorpe, I. A.; McIntyre, P. C.; Chidsey, C. E. D.; *Nano Lett.*, 2007; 7(6); 1637-1642.

Synchrotron radiation photoemission from GeNW surface

• 10eV to 100eV synchrotron photons were used to study chemical composition of GeNW surfaces

$$E_{b} = hv - E_{k} - \Phi_{a}$$

• Ge3d spectrum used to determine any change in the chemical composition of GeNW suface

Ge3d spectrum of as-grown GeNW

Ge3d spectrum of HCI treated then triiodide-HCI treated GeNW sample

HCI (aq) prevents the oxidation of GeNW surfaces

Adhikari, H., McIntyre, P.C., et.al."Photoemission studies of the passivation of germanium nanowires <u>Applied Physics Letters</u> 87(26):263109

26 Hanrath, T., and B.A. Korgel. "Chemical surface passivation of Ge nanowires "Journal of the American Chemical Society 126(47) 15466-15472

Ge3d spectrum of triiodide treated then HCI treated GeNW samples

HCI (aq) renders the GeNW surface CI terminated

Outline

- introduction
- GeNW growth from gold nanoparticles
- effect of gold in germanium and silicon processing
- gold removal procedure
- chemical characterization of GeNW surfaces before and after gold removal
- effectiveness of the gold removal procedure
- conclusion

Gold removal from GeNW samples

a) as-grown GeNW

b) gold removed GeNW with triiodide (aq)

c) gold removed GeNW with triiodide-HCI (aq)

One needs to show that gold atoms have been removed to 1 x 10¹⁰ atoms/cm² (ITRS 2006)

Woodruff, J. H.; Ratchford, J. B.; Goldthorpe, I. A.; McIntyre, P. C.; Chidsey, C. E. D.; *Nano Lett.*, 2007; 7(6); 1637-1642.

ICP-OES measurement of extent of gold removal

ICP-OES detection limit (_ _) too high to measure trace levels of gold

ICP-MS measurement of extent of gold removal

32

Source of residual gold?

 used Auger electron spectroscopy to perform microanalysis at specific sample features

courtesy of Chuck Hitzman, Stanford Nanocharacterization Laboratory

Secondary electron image of gold particles and Ge Wire

Auger electron spectrum at point 2

Sputter Depth Profile of Au nanoParticle

Capped gold nanoparticle reduces yield and effectiveness of gold removal?

Environmental impact of GeNW electronic materials

- GeNW in-situ growth reduces process waste of expensive bulk materials
- single crystal growth at lower processing temperature
- unknown semiconductor manufacturing process integration of gold catalyzed GeNWs

Acknowledgements

- Professor Yoshi Nishi
- ICP-MS: Rob Franks, University of California-Santa Cruz Marine Analytical Lab
- AES: Chuck Hitzman, Stanford Nanocharacterization Laboratory
- SRC contract number 2006-VJ-1429 Task 1429.001
- DARPA/SPAWAR grant N66001-04-1-8916