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 ACTIVATED CARBON

 BEST BROAD SPECTRUM ADSORBENT  FOR
POLLUTION CONTROL (GAS & LIQUID PHASES)

 GAS PHASE - SOLVENT RECOVERY, GAS
SEPARATIONS, NERVE GASES

 LIQUID PHASE - MINERAL RECOVERY,
SURFACTANT REMOVAL, DE-CHLORINATION,
WATER-WASTEWATER TREATMENT

 ALL COMERCIALLY ACTIVATED CARBONS VARY
CONSIDERABLY IN ADSORPTION
CHARACTERISTICS FOR A GIVEN POLLUTANT
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ACTIVATED CARBON
CHARACTERISTICS

 A “SOLID SPONGE”
 INTERNAL SURFACE AREA ( 700 -1,200

m2/gm)
 PORE DIAMETERS

micropores - <40 A
mesopores - 40-5,000 A
macropores - 5,000 -20,000 A

 LIQUID & GAS PHASE CARBONS
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MANUFACTURING PROTOCOLS
AFFECT AC PROPERTIES

 SOURCE MATERIAL - COAL, LIGNITE,
WOOD,  COCONUT SHELL, and
PETROLEUM RESIDUES

 TIME ,TEMPERATURE & OXIDIZING GAS
 PORE SIZE & VOLUME DISTRIBUTIONS
 SURFACE CHEMISTRY - oxygen complexes,

(ether,peroxide, carboxyl, quinones, etc)
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ADSORPTION

 ACCUMULATION OF SUBSTANCES AT A PHASE
BOUNDRY BETWEEN TWO PHASES

 ADSORBATES  ARE SUBSTANCES ACCUMULATED
BY AN ADSORBENT

 PHYSICAL ADSORPTION - WEAK VAN DER WAALS
FORCES,  REVERSIBLE PROCESS

 CHEMISORPTION - REACTION WITH AC
SURFACES, IRREVERSIBLE PROCESS, SURFACE
CHEMISTRY
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AC PERFORMANCE

 READILY ADSORBED ORGANICS
AROMATIC SOLVENTS, CHLORINATED AROMATICS,
CHLORINATED ALIPHATICS, PHENOLS, HIGH MOLECULAR
WEIGHT HYDROCARBONS

POORLY ADSORBED ORGANICS
ALCOHOLS, LOW MOLECULAR WEIGHT ALDEHYDES,
KETONES AND ACIDS, LOW MOLECULAR WEIGHT
ALIPHATICS, VERY HIGH MOLECULAR WEIGHT
ALIPHATICS
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AC THERMAL REGENERATION

MULTIPLE HEARTH FURNACES
ROTARY KILNS
FLUIDIZED BEDS
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TYPICAL AC PROPERTY CHANGES
WITH REGENERATION

0.4739409.53

0.4699358.62

0.46810407.61

0.46910905.7initial
DENSITYI2 #ASH %CYCLE
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10% - 15% MASS LOSS PER
REGENERATION CYCLE

PARTICLE SIZE CHANGES
 REGENERATED AC IS A NOT 100%

FROM THE OWNERS BATCH

THERMAL REGENERATION
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 Fenton-driven Regeneration of GAC

 Transform environmental contaminants into
less toxic byproducts

 Re-establish the sorptive capacity of the GAC
for the target chemicals

 Increase the useful life of the GAC
 Reduce treatment costs for GAC regeneration;

energy, water and air treatment
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Hydrogen Peroxide (H2O2)

 pH
 Conventional wisdom in soil systems (revised)
 Recent studies suggest pH plays minor role in the regeneration of

MTBE-spent GAC
 H2O2 concentration (increase)

 Rate and extent of oxidation increases
 source term for •OH:  k1 [H2O2] [Fe+2]

 Oxidation efficiency decreases (H2O2 scavenging)
H2O2 + •OH => •HO2 + H2O

 Optimal [H2O2] – treatment objective: (1) time, rate of regeneration;
(2) cost



25

Iron (Fe)

 Fe amendment has enhanced GAC regeneration
 Iron solutions amended to GAC are acidic

 Generally good (BSO reduction, ASO production)
 Counter-ion of ferric iron

 Cl-, SO4
2-, NO3

-

 Blockage of the pore structure by Fe oxides
 Complexation, precipitation, ion exchange
 Freshly added - predominantly poorly ordered, amorphous
 Small effect on surface area and PVD by moderate increases in Fe

concentrations
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Fe-amendment impact on surface area and pore volume
distribution (Huling et al., 2005a).

(n=9)(n=9)(n=4)

0.512        0.175        0.687130310360Fe-amended

0.536       0.193         0.72813851380Fe-unamended

Pore Volume Distribution
Micro-  Meso+Macro   Total

(ml/g)

BET Surface
Area  (m2/g)

[Fe]
(mg/kg)
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Physicochemical Effects:
Adsorbate-free

• Repeated H2O2 treatments in Fe-amended, adsorbate-
free GAC (Huling et al., 2005a)
 H2O2 applied in 15 sequential applications (pH 3.5)
 No adsorbate was present during the oxidation (oxidative

effects vs adsorbate/decomposition products)
 4 % loss in GAC
 15% loss in surface area
 30% reduction in Iodine number
 37% loss in micropore volume
 Increase in the meso+macro pore volume
 Loss in sorption capacity for 2CP, TCE, MTBE
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Physicochemical Effects:
MTBE Amended

 Multiple regenerations using repeated H2O2 treatments in Fe-
amended, MTBE-spent GAC (Huling et al., 2005b)
 Two full regeneration cycles (adsorption/oxidation 2X + adsorption).
 Transformation of MTBE, TBA, and acetone.
  91% GAC regeneration.
  Approximately 5X less loss in surface area and pore volume was

measured; no loss in sorption capacity for MTBE.
 GAC protected by adsorbate/byproducts.
 Optimal balance – strength/number oxidative treatments vs. anticipated

effects on the sorptive characteristics of GAC.
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GAC Regeneration

Wide range of environmental contaminants
 adsorption + oxidation (reduction)

Chemicals tested
 TCE 73–95% (De Las Casas et al., 2005)
 MC 100% (De Las Casas et al., 2005)
 CF 94% (De Las Casas et al., 2005)
 NDMA  >99% (Kommineni et al., 2003)
 MTBE 91% (Huling et al., 2005b)
 DIMP 97-98% (Huling and Jones, 1999)
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SUMMARY

AC - BEST AVAILABLE ADSORBENT
COMMERCIAL AC’s VARY
CONSIDERABLY IN PERFORMANCE
PERFORMANCE IS RELATED TO RAW
MATERIAL SOURCE AND
MANUFACTURING CONDITIONS
THERMAL REGENERATION: OFF-SITE,
HIGH TEMP ,WEIGHT LOSSES (~15%),
CHANGES PSD, PVD
FENTON REGENERATION:ON-SITE,
AMBIENT TEMP., WEIGHT LOSSES(<1%),
MIN. PSD, PVD CHANGES
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