ACTIVATED CARBON CHARACTERISTICS-PERFORMANCE-REGENERATION

RAYMOND A. SIERKA, PH.D, P.E.

EMERITUS PROFESSOR CHEMICAL & ENV. ENGR. UNIVERSITY OF ARIZONA CONSULTING ENGINEER MARCH 22,2007

ACTIVATED CARBON

BEST BROAD SPECTRUM <u>ADSORBENT</u> FOR POLLUTION CONTROL (GAS & LIQUID PHASES)

<u>GAS PHASE</u> - SOLVENT RECOVERY, GAS SEPARATIONS, NERVE GASES

LIQUID PHASE - MINERAL RECOVERY, SURFACTANT REMOVAL, DE-CHLORINATION, WATER-WASTEWATER TREATMENT

ALL <u>COMERCIALLY ACTIVATED CARBONS</u> VARY CONSIDERABLY IN ADSORPTION CHARACTERISTICS FOR A GIVEN POLLUTANT

ACTIVATED CARBON CHARACTERISTICS

A "SOLID SPONGE" INTERNAL SURFACE AREA (700 -1,200 m²/gm) PORE DIAMETERS micropores - <40 A mesopores - 40-5,000 A macropores - 5,000 - 20,000 A **LIQUID & GAS PHASE CARBONS**

Figure 1. Pore volume distributions of typical gas and liquid phase activated carbons

MANUFACTURING PROTOCOLS AFFECT AC PROPERTIES

SOURCE MATERIAL - COAL, LIGNITE, WOOD, COCONUT SHELL, and PETROLEUM RESIDUES

<u>TIME , TEMPERATURE & OXIDIZING GAS</u>

PORE SIZE & VOLUME DISTRIBUTIONS

<u>SURFACE CHEMISTRY</u>- oxygen complexes, (ether,peroxide, carboxyl, quinones, etc)

Figure 4 Pore size distributions for various commercially available activated carbons

Activated Carbon (Mesh Size)	Manufacturer		Surface Area (m ² /g)		Pore Volume (cm ^{3/} g)	
		Raw Material	BET	Macro- pore	Macro- pore	Total
Fiitrasorb 400 (<14)	Calgon Corp.	Bituminous coal	1228	366	0.625	1.108
Filtrasorb 400 (20×30)	Calgon Corp.	Bituminous coal	1075	309	0.643	1 071
Filtrasorb 400 (40 \times 60)	Calgon Corp.	Bituminous coal	1155	433	0.847	1 235
Hydrodarco $3000 (20 \times 40)$	ICI America	Lignite coal	575	99	0 787	0.975
Witearb 940 (14 \times 20)	Witco Chemical Corp.	Petroleum-based coke	950	106	0.208	0.599
Nuchar WV-B (20×35)	Westvaço	Bituminous coal	1422	778	1 290	1.865
Nuchar WV-DC (20×35)	Westyaco	Wood-based coal	1115	621	1 230	1.764
Nuchar WV-G (20×40)	Westvaco	Bituminous coal	1020	238	0.398	0.814
Nuchar WV-H $(8 \times i6)$	Westvaco	Bituminous coal	910	133	0.251	0.610
Nuchar WV-L (20×30)	Westvaco	Bituminous coal	976	188	0 420	0.818
Nuchar WV-W (20 × 40)	Westvaco	Bituminous coal	861	154	0.281	0.612

Table 1 Characteristics of selected activated carbons

Figure 5 Crystallite showing dimensions

SAMPLE a,		c,	A	c
DARCO S-51	2.45	7.20	27	9.5
DARCO G-60	2.45	7.50	38	9.5
DARCO K	2.45	7.30	27	10.7
Competitive	2.45	. 7.70	30	10.0
Graphite	2.456	6.708	>1000	>1000

Table 2 Crystallite sizes in angstroms

ADSORPTION

ACCUMULATION OF SUBSTANCES AT A PHASE BOUNDRY BETWEEN TWO PHASES

ADSORBATES ARE SUBSTANCES ACCUMULATED BY AN ADSORBENT

<u>PHYSICAL ADSORPTION</u> - WEAK <u>VAN DER</u> <u>WAALS</u> <u>FORCES,</u> REVERSIBLE PROCESS

<u>CHEMISORPTION -</u> REACTION WITH AC SURFACES, IRREVERSIBLE PROCESS, SURFACE CHEMISTRY

AC <u>PERFORMANCE</u>

READILY ADSORBED ORGANICS

AROMATIC SOLVENTS, CHLORINATED AROMATICS, CHLORINATED ALIPHATICS, PHENOLS, HIGH MOLECULAR WEIGHT HYDROCARBONS

POORLY ADSORBED ORGANICS

ALCOHOLS, LOW MOLECULAR WEIGHT ALDEHYDES, KETONES AND ACIDS, LOW MOLECULAR WEIGHT ALIPHATICS, VERY HIGH MOLECULAR WEIGHT ALIPHATICS

Figure 7 Comparison of isotherm adsorption capacities

AC THERMAL <u>REGENERATION</u>

MULTIPLE HEARTH FURNACES ROTARY KILNS FLUIDIZED BEDS

TYPICAL AC PROPERTY CHANGES WITH REGENERATION

CYCLE	ASH %	l ₂ #	DENSITY
initial	5.7	1090	0.469
	7.6	1040	0.468
2	8.6	935	0.469
3	9.5	940	0.473

Figure 9 Typical activated carbon thermal regenerating facility

THERMAL REGENERATION

 10% - 15% MASS LOSS PER REGENERATION CYCLE
 PARTICLE SIZE CHANGES
 REGENERATED AC IS A NOT 100% FROM THE OWNERS BATCH

Fenton-driven Regeneration of GAC

 Transform environmental contaminants into less toxic byproducts

Re-establish the sorptive capacity of the GAC for the target chemicals

Increase the useful life of the GAC

 Reduce treatment costs for GAC regeneration; energy, water and air treatment

ADSORPTION / REGENERATED CARBON

23

Hydrogen Peroxide (H₂O₂)

рH

- Conventional wisdom in soil systems (revised)
- Recent studies suggest pH plays minor role in the regeneration of MTBE-spent GAC

/ H₂O₂ concentration (increase)

- Rate and extent of oxidation increases
 - ✓ source term for •OH: $k_1 [H_2O_2] [Fe^{+2}]$
- ✓ Oxidation efficiency decreases (H_2O_2 scavenging) H_2O_2 + •OH => •HO₂ + H_2O_2
- Optimal [H₂O₂] treatment objective: (1) time, rate of regeneration;
 (2) cost

Iron (Fe)

Fe amendment has enhanced GAC regeneration
Iron solutions amended to GAC are acidic
Generally good (BSO reduction, ASO production)
Counter-ion of ferric iron
Cl⁻, SO₄²⁻, NO₃⁻
Blockage of the pore structure by Fe oxides
Complexation, precipitation, ion exchange
Freshly added - predominantly poorly ordered, amorphous
Small effect on surface area and PVD by moderate increases in Fe concentrations

Fe-amendment impact on surface area and pore volume distribution (Huling *et al.*, 2005a).

	[Fe] BET Surface	BET Surface	Pore Volume Distribution			
	(mg/kg)	Area (m²/g)	Micro- Meso+Macro Total			
			(ml/g)			
Fe-unamended	1380	1385	0.536	0.193	0.728	
Fe-amended	10360	1303	0.512	0.175	0.687	
	(n=4)	(n=9)		(n=9)		

Maximum Fe loading oxidation efficiency

- Repeated H₂O₂ treatments in Fe-amended, adsorbatefree GAC (Huling *et al.*, 2005a)
 - H₂O₂ applied in 15 sequential applications (pH 3.5)
 - No adsorbate was present during the oxidation (oxidative effects vs adsorbate/decomposition products)
 - 4 % loss in GAC
 - 15% loss in surface area
 - 30% reduction in Iodine number
 - 37% loss in micropore volume
 - Increase in the meso+macro pore volume
 - Loss in sorption capacity for 2CP, TCE, MTBE

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Physicochemical Effects: MTBE Amended

Multiple regenerations using repeated H₂O₂ treatments in Feamended, MTBE-spent GAC (Huling *et al.*, 2005b)

- Two full regeneration cycles (adsorption/oxidation 2X + adsorption).
- Transformation of MTBE, TBA, and acetone.
- 91% GAC regeneration.
- Approximately 5X less loss in surface area and pore volume was measured; no loss in sorption capacity for MTBE.
- ✓ GAC protected by adsorbate/byproducts.
- Optimal balance strength/number oxidative treatments vs. anticipated effects on the sorptive characteristics of GAC.

GAC Regeneration

Wide range of environmental contaminants adsorption + oxidation (reduction) Chemicals tested 73–95% (De Las Casas et al., 2005) TCE MC 100% (De Las Casas et al., 2005) 94% (De Las Casas et al., 2005) CF ✓ NDMA >99% (Kommineni et al., 2003) 91% (Huling et al., 2005b) MTBE DIMP 97-98% (Huling and Jones, 1999)

References

- 1. Huling, S.G., R.G. Arnold, R.A. Sierka, P.K. Jones and D. Fine. 2000. "Contaminant Adsorption and Oxidation via Fenton Reaction." J. Environ. Eng. 126(7), 595-600.
- Kommineni, S.; Ela, W.P.; Arnold, R.G.; Huling, S.G.; Hester, B.J.; Betterton, E.A. 2003. "NDMA Treatment by Sequential GAC Adsorption and Fenton-Driven Destruction." J. Environ. Eng. Sci., (20)4, 361-373.
- 3. Huling, S.G., P.K. Jones, W.P. Ela, and R.G. Arnold. 2005a. "Repeated Reductive and Oxidative Treatments on Granular Activated Carbon". J. Environ. Eng., 131(2), 287-297.
- 4. Huling, S.G., P.K. Jones, W.P. Ela, and R.G. Arnold. 2005b. "Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon" Water Research. (39)2145-2153.
- De Las Casas, C., Bishop, K., Bercik, L., Johnson, M., Potzler, M., Ela, W., Sáez, A.E., Huling, S. and Arnold, R. 2006. "In-Place Regeneration of GAC using Fenton's Reagents". In "Innovative Approaches for the Remediation of Subsurface-Contaminated Hazardous Waste Sites: Bridging Flask and Field Scales." Clark, C. and Lindner, A. (eds), ACS Symposium Series 940, pgs. 43-65.
- 6. Huling, S.G.,K.P Jones, and T. Lee. 2006. "Iron Optimization in Fenton-Driven Chemical Regeneration of Granular Activated Carbon." *Environ. Sci. Technol.* (In Press).

SUMMARY

>AC - BEST AVAILABLE ADSORBENT ➢COMMERCIAL AC's VARY CONSIDERABLY IN PERFORMANCE PERFORMANCE IS RELATED TO RAW MATERIAL SOURCE AND MANUFACTURING CONDITIONS ➤THERMAL REGENERATION: OFF-SITE. HIGH TEMP, WEIGHT LOSSES (~15%), CHANGES PSD, PVD \succ FENTON REGENERATION:ON-SITE, AMBIENT TEMP., WEIGHT LOSSES(<1%), MIN. PSD, PVD CHANGES

CONTACT NUMBERS

RAYMOND A. SIERKA, Ph.D.,P.E. 6967 E.WILD CANYON PLACE TUCSON, AZ 85750 Phone: 520-577-1352 drsierka@comcast.net

