Where Are They Now? A Former ERC Student Describes His Entrepreneurial Experience

ERC Teleseminar

May 31, 2007

Hilton G. Pryce Lewis, Ph.D. President, GVD Corporation 19 Blackstone St., Suite 1 Cambridge, MA 02139 (617) 661-0060 x11 hilton@gvdcorp.com

Background

- Ph.D. Student 1997-2001
- Graduate research:
 - Silicone thin films for biopassivation.
 - Directly patternable low-k dielectric.
- Thin films by CVD:
 - PECVD
 - Hot Filament CVD ("iCVD")
- Founded GVD in 2001; own facility in 2003.

iCVD* Technology

*initiated chemical vapor deposition

Core Technology

 Low-temperature nanocoating process enables thin polymer coatings on almost any material.

Evolution from Plasma CVD

PECVD/ Pulsed PECVD

Hot filament CVD/ iCVD

- Reduces plasma damage
- Lower energy input
- Favors discrete polymerization
- Retention of functional groups

Enables Linear Polymerization

Commercially Viable Deposition Rates

Why Is This Important?

iCVD:

- Enables deposition of polymers that are:
 - infusible (don't melt) and
 - insoluble (don't dissolve)
- Process appears to be scaleable.

PTFE (Teflon[®]) Is a Good Example

BUT

PTFE has Unique Properties

Biocompatibility (Catheters)

Chemical resistance (Filters)

Thermal resistance (Pumps)

Electrical Insulation (Wire)

Low-friction (Cookware)

Water-repellency (Apparel)

Traditional Coating Is:

Limited in substrate choice
 Small complex parts tough
 Multi-step process
 Adhesion challenges

Gentle & Effective Protection w/ PTFE

Protects against aggressive chemicals

Flexible and Adherent

Silicone

Conformal, Uniform Coverage

Microscale Coverage

Nanoscale Coverage

Conformal Coating of Particles

Applicable to Other Polymers (40+)

Monomer Structure	Monomer Name	Function as Polymer
	DMAMS	Antimicrobial
(CH ₂) ₂ (CF ₂) ₇ CF ₃	FDA	Super-hydrophobic Oleophobic
→or	HEMA	Super-hydrophilic
	VP	Super-hydrophilic
	EGDA	Crosslinker

Courtesy Dr. Karen Gleason & her group at MIT

Applicable to Other Polymers (40+)

Monomer Structure	Monomer Name	Function as Polymer
	CHMA	Sacrificial material
۲− ۲−	MAA	Enteric material
\mathbf{z}	GMA	Patternable resist Functionalizable
	V3D3	Biopassivation Low-k

Courtesy Dr. Karen Gleason & her group at MIT

Business Plan (How Do We Make \$\$?)

• Starting out:

- Commercial interest in PTFE
- Prototyping capability for PTFE
- Large list of potential applications for PTFE
- "Brand awareness" of PTFE
- Market niche for PTFE:

Material Advantages (PTFE)

Low Friction

- Slippery cutting edges.
- Sliding parts.

Nonstick

- Release coatings.
- Non-fouling surfaces.

Hydrophobic

- Water-repellent fabrics.
- Non-fouling surfaces.

Resistant

- Chemical/biological resistance.
- Environmental protection.

Biocompatible

• Medical devices.

Process Advantages

Low Temperature

• Plastics, organics possible

Fabric

Spray/Dip

CVD

Meta

Leather

No Cure Step

- Plastics, organics possible
- No deformation

Solventless

- No compatibility issues
- No solvent waste

Thin (10 nm – 10 μm)

- Low-weight
- Fine, complex geometries

Conformal

• Fine, complex geometries

May 31, 2007

20

Plastic

Wo

Cotton

Canvas

GVD Growth Strategy

Strategy: Stage I

1. Focus on PTFE

- 2. Grow organically using industry/gov funds (development \$ from industry, government)
 - 3. Screen applications for REAL problems (avoid dabblers, impossible problems)
 - 4. Scale process and build capability (capability = people, process, equipment, data)

Process Scaling

4-inch 1993

2-inch 1990 Reproducibility May 31, 2007

6-inch 1997

 R&D
 Thickness measurement
 Manual operation

10-inch 2000

R&D/light production
Good uniformity
High efficiency
Manual operation

Echelon™ 30-inch 2004

- Medium production
- Rectangular
- Excellent uniformity
- Adjustable stage
- Semi-automated operation

GVD Standard Coating Tools

Echelon[™]

iRoll[™]

Continuous

Small Batch

- * Current capability:
- * Under development:
- * Future capability:

Large Batch

- PTFE (Teflon[®]) Silicones, conducting polymers
- •Antimicrobial
- Superhydrophilic
- •Enteric coating
- Functionalizable

GVD Production System

Scalable Even Further (e.g. metallization)

PTFE Applications

27

PTFE Business Model

• Revenues:

- License fees and equipment sale
- R&D services (through 3 phases below)

• Three-phase development:

- Phase I Feasibility (proof-of-concept)
- Phase II Development (statistics, scale-up)
- Phase III Commercialization (license, prod'n)
- Partnership with customers is key:
 - Partner brings market knowledge, specifications, funding
 - GVD brings IP, prototyping capability, process expertise

Strategy: Stage II

1. Generate sustainable revenue from:

Low-volume production Equipment and license

2. Expand product line outside PTFE:

Conducting Polymer Hydrophilic coating Antimicrobial

3. Sell a solution that makes sense.

New Opportunity: Conducting Polymers

e.g. PEDOT (Poly 3,4 dioxyethylene thiophene)

GVD PEDOT vs. Baytron P®

- Shares benefits of PTFE process
- Tunable conductivity
- Tunable work function

Flexible

Markets Complement PTFE

Key Challenges

- "Bootstrapping" / organic growth
- Materials development: long and expensive!
- Platform technology: multiple fragmented markets
- Making strategic decisions, not tactical ones
- Distinguishing real needs from "dabbling"
- Corporate turnover at our customers
- Negotiating partnership deals
- Personnel ...

Summary

- Profitable small business (Stage I)
- Experienced, dedicated team
- Commercial products on market
- Other comm'l products in pipeline
- Financed by non-equity capital
- Scaled process successfully by 100x
- Evaluating next opportunity (stage II)

"Never a dull moment"