Electrochemical Water Treatment Using Boron Doped Diamond Film Electrodes

Lily Liao, Ph.D. Research Associate Department of Chemical and Environmental Engineering University of Arizona

Outline

- Background
 - Common treatment technologies
 - Three Electrode cell
 - Electron transfer mechanisms
 - Advantage of BDD electrodes
- Treatment of CMP wastewaters
 - Reduction of Cu²⁺
 - Oxidation of Citrate
- Treatment of PFOS wastewaters
- Conclusions

Treatment Technologies

- 1. Adsorption activated carbon, zeolites ~
- 2. Ion Exchange
- 3. Air stripping
- 4. Membranes reverse osmosis
- 5. Biological treatment aerobic, anaerobic
- 6. Chemical Oxidation UV or O_3/H_2O_2
- 7. Electrochemical reduction/oxidation

-Disposal issues

Destructive

removal

Three Electrode Cell

Reduction - Electron Transfer Mechanisms

Water Oxidation

All Electrode:

Active Electrode: $(IrO_2; RuO_2)$

Inactive Electrode: (BDD; PbO₂; SnO₂) $MO_{x} + H_{2}O \rightarrow MO_{x}(OH^{\bullet}) + H^{+} + e^{-}$ $MO_{x}(OH^{\bullet}) \rightarrow MO_{x+1} + H^{+} + e^{-}$

 $MO_x(OH^{\bullet}) \not > MO_{x+1} + H^+ + e^-$

- MO_x is a metal oxide site on the anode surface.
- Water oxidation produces adsorbed OH[•] radicals.
- Active oxygen species (MO_x(OH[•]) and MO_{x+1}) may oxidize organic compounds.
- High concentrations of active oxygen species lead to O₂ evolution.

 $MO_x(OH^{\bullet}) \rightarrow 0.5 O_2 + H^+ + e^- + MO_x$ Inactive Electrode

 $MO_{x+1} \rightarrow 0.5 O_2 + MO_x$

Active Electrode

Oxidation - Electron Transfer Mechanisms

Boron-Doped Diamond Film (BDD) Electrodes

- Diamond film grown on p-silicon substrate using chemical vapor deposition (CVD) technique
 - P-silicon polished with a diamond containing paste, serving as nucleation sites
 - Microwave radiation or a hot filament used to decompose gas mixture of methane and hydrogen
 - Boron doping: B₂H₆
- Boron doping provides electrical conductivity

Scanning electron micrograph of BDD electrode. The individual diamond crystals are ~0.5 µm in size. 8

BDD Electrodes: Advantages

- Nonactive electrodes: capable of complete mineralization to CO₂.
- Highly stable under anodic and cathodic polarization
- Very low catalytic activity for oxygen and hydrogen evolution: wide electrochemical window for water oxidation and reduction.
- High mechanical strength and resistance to chemical attack
- Hydrophobicity

BDD Electrode: Applications

10

- nitrate reduction to ammonia (Bouamrane, et al., 1996)
- organic compound oxidation in wastewater (Gyorgy et al., 1999)
- metal ion quantification (Ramesham, 1999)
- metal ion removal (Perret, et al. 1999)
- cathodic hydrogen peroxide generation (Goeting, et al., 1999)
- ozone generation (Katsuki, et al., 1998)
- peroxodisulfuric acid generation (Michaud, et al., 2000)
- glucose, ethanol and COD sensors (Rychen, et al., 2001)

Experimental Systems

Rotating disk electrode (RDE) in batch reactor.

- no mass transfer limitations
- electrode surface area = 1 cm^2
- solution volume = 350 mL
- $a_s = 0.00286 \text{ cm}^2/\text{mL}$

Parallel plate flow-cell.

- rates similar to real treatment process
- electrode surface area = 25 cm²
- solution volume = 15 mL
- $a_s = 1.67 \text{ cm}^2/\text{mL}$

Example: Treatment of CMP Wasetwater

- Chemical-mechanical planarization (CMP): key technology in ultra large-scale integration devise manufacturing
- Complex waste mixture consisting of suspended solids, Cu²⁺ ions, chelating agents, corrosion inhibitor and other additives
- Current treatment technologies:several sequential unit operations (Expensive)
 - Coagulation/flocculation (additional chemicals introduced)
 - Filtration
 - Ion-exchange
 - Regenation of the ion exchange resin (secondary waste stream)
- Electrochemical methods: simpler and cost effective
 - Cathodic decomposition to remove Cu²⁺ ions
 - Anodic decomposition to remove corrosion inhibitors and organic complexing agents.
 - Filtration after coagulation induced by acidic environment generated by anodic reaction

Tamilmani, S.; Hung, W. H.; Raghavan, S.; Farrell, J. IEEE transactions on Semiconductor manufacturing, 17, 448-454 (2004).

CMP Wastewater Treatment: Batch Experiments

SEM Micrographs of Copper Deposits

Copper deposits obtained after 90 minutes of polarization at -200 mV-Ag/AgCI in a 50 mM K₂SO₄ solution containing 20 mg/L copper.

Copper on Copper Electrode

Copper on BDD Electrode

Discrete particles suggests discrete active sites.

Effect of Potential on Cu²⁺ Removal

Cu²⁺ removal in batch RDE reactor at 100 rpm.

- Slower removal at lower potential due to increased blocking effect of hydrogen bubbles.
- Weak effect of potential suggests mass transfer limited removal.
- Removal rate = mass transfer limited flux for d=45 μ m.

Effect of pH on Cu²⁺ Removal

- Cu²⁺ removal rates are independent of the pH value.
- Current efficiency for Cu deposition is greater at pH=4.
 - Same amount of Cu²⁺ removal
 - Lower rate of water reduction
 - Smaller electroactive surface area

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

16

Effect of pH on Cu Morphology

• Fewer but larger spheres at pH=4: overall smaller electroactive surface area than that at pH=6 leading to higher current efficiency.

 Lower pH may decrease the number of active sites by protonating oxygenated active sites.

Effect of Complexing Agents on Cu²⁺ Removal

- Citrate had a minor effect on the Cu²⁺ removal rate.
- Citrate increased the current efficiency for Cu²⁺ removal.
- Adsorbed citrate may block sites for O_2 reduction.

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

18

Citrate Oxidation

Citrate removal was independent of the current density, suggesting indirect oxidization by HO[•]

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

= -k₁c

Citrate Destruction and TOC Removal

Similar TOC and citrate removal indicates mineralization to CO₂.

20

Proposed Treatment Scheme

Example: Destruction of PFOS

- Perfluorooctyl Sulfonate (PFOS) is a perfluorinated surfactant: hydrophilic and hydrophobic
- Extremely low surface tension (2 dynes/cm²)
- Widely used in commercial products and industry process
 - Pharmaceuticals, adhesives, Teflon coatings
 - Stain-resistant coatings for fabrics, upholstery, and carpet
 - Paper protectors for food products
 - Semi-conductor industry
 - Electroplating and electronic etching baths
 - Photographic emulsifiers
 - Surface treatment agents for photolithography
 - Fire extinguishing foams
- Problems with the compound
 - Very stable in environment and accumulate in human body
 - Not degradable by conventional advanced oxidation processes
 - Not biodegradable in wastewater treatment plant
- New technology is needed to remove PFOS from dilute aqueous solutions

Destruction of PFOS: Experimental Results

23

PFOS and total organic carbon concentration (TOC) in flowcell operated at a current density of 15 mA/cm².

- PFOS can be rapidly removed from water
- Reaction rates are first order
- Treatment half-life less than 10 minutes
- No build-up of fluorinated organic reaction products

Destruction of PFOS: Reaction Products

Proposed Reaction Sequence

25

PFOS **PFOA** $C_{8}F_{17}SO_{3}H + 3H_{2}O \rightarrow C_{7}F_{15}CO_{2}H + SO_{4}^{2-} + 4H^{+} + 2F^{-} + 2H_{2}$ $C_7F_{15}CO_2H + 2H_2O \rightarrow C_6F_{13}CO_2H + CO_2 + 2H^+ + 2F^- + H_2$ PFOA $C_5F_{11}CO_2H$ $C_4F_9CO_2H$ C₃F₇CO₂H $C_{2}F_{5}CO_{2}H$ Volatile species Pentafluoropropionic acid CF₃CO₂H Volatile species Trifluoroacetic acid

- Fluoride mass balance of 11 F- released per PFOS degraded suggests that volatile species are lost from solution.
- Only trace levels of intermediate products suggests near complete FPOS destruction in a single interaction with the electrode surface.

Effect of Current Density on Reaction Rates

26

The effect of current density on the RDE surface area normalized rate constants (k_{sa}) for PFOS oxidation.

- Oxygen gas bubbles at high current densities reduce the wetted surface area of the electrode and interfere with PFOS oxidation.
- Maximum practical reaction rates are limited by the competing reaction of oxygen evolution.

PFOS Treatment Costs

Electrical power requirements and costs required to reach a final PFOS concentration of 1 mg/L (2.5 μ M) as a function of the influent concentration. Costs based on flow-cell operated at a current density of 20 mA/cm².

- Electrical power costs are small compared to other treatment methods.
- Capital costs for a 10 liter per minute flow-cell are ~\$5000.

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

27

Proposed Treatment Scheme

28

Multi-step treatment scheme:

- 1. Concentrate target compounds from dilute aqueous solutions on an adsorbent.
- 2. Thermally desorb PFOS into a concentrated solution.
- 3. Recirculate concentrated PFOS solution through a BDD electrode reactor for electrolytic destruction.
- 4. Dispose of biodegradable electrolysis products to the sanitary sewer system.

Conclusions

29

- Electrochemical treatment at BDD electrode can be used for destructive removal of both inorganic and organic contaminants.
- Electrochemical treatment of CMP wastewater at BDD anodes is capable of removing Cu²⁺ ions, decomposing organic compounds and decreasing pH in one single reactor.
- Organic compounds such as PFOS that cannot be oxidized by chemical and biological treatment process can be treated by electrochemical process.

Acknowledgements

- James Farrell, Srini Raghavan, Kimberly Carter, Subramanian Tamilmani, Wayne H. Huang
- NSF/SRC ERC 2001MC425
- NSF Chemical and Transport Systems CTS-0522790
- Petroleum Research Fund 43535-AC5

Industrial Collaboration

- Tim Yeakley
- Thomas P. Diamond
- Jim Jewett
- Laura Mendicino

Texas Instruments

IBM

Intel

Freescale Semiconductor

