

1

<u>Interaction of Molecular</u> <u>Contamination with Surfaces</u>

Junpin Yao, Asad Iqbal, Harpreet Juneja and Farhang Shadman

Chemical and Environmental Engineering, University of Arizona

ERC Teleseminar

Thursday, October 18, 2007

Interaction of Molecular Contamination with High-k Dielectric Films

IPA Adsorption Loading

3

> HfO₂ and ZrO₂ have higher IPA adsorption loading than SiO₂

- \blacktriangleright IPA loading order: $ZrO_2 > HfO_2 > SiO_2$
- Same trend was observed over a wide range of concentrations

Effect of Pre-Adsorbed Moisture on IPA Loading

Experimental Procedure

Step 1. Moisture challenge (conc: 56 ppb)

Step 2. IPA challenge (conc: 107 ppb)

- Presence of one contaminant can affect adsorption/desorption characteristics of other
- Moisture hydroxylates oxide surfaces; the hydroxyl groups change the nature of the surface
- Pre-adsorbed moisture enhances IPA adsorption on SiO₂, but reduces IPA adsorption on HfO₂ and ZrO₂
- IPA is more attracted to bare HfO₂ and ZrO₂ surfaces than to hydroxylated surfaces. Presence of H₂O reduces their affinity for IPA

4

Interaction of IPA with Hyroxylated

5

Surfaces

- ► C_3H_7DO (m/e = 46) formed when IPA is introduced on D₂O-covered ZrO₂
- C₃H₇DO may be formed by surface interactions between IPA and D₂O
- C₃H₇DO is also formed in the APIMS plasma (source) from interactions between IPA and D₂O
- Sample-gas ionization in the APIMS is accomplished by electron impact at atmospheric pressure
- Extensive collisions among molecules in the APIMS plasma source produce intermediate species (for example, C₃H₇DO)
- A technique was required to characterize and separate post-reactor interferences due to plasma effect

Adsorption Model

7

Conclusion

- ZrO₂ was shown to form the strongest metal-hydroxyl (M-OH) bond and adsorb IPA stronger than SiO₂ and HfO₂
- ZrO₂ should not be the material of choice from the standpoint of molecular contamination
- □ Isotope labeling with D₂O indicated chemisorption of IPA on hydroxylated surfaces via an esterification reaction

8

Interaction of Molecular Contamination with Low-k Dielectric Films

<u>Contamination Behavior of Low-k</u> <u>Materials</u>

- Low-k inter-layer dielectrics (ILD) are highly prone to molecular contamination, especially if it porous
- Potential issues associated with molecular contamination of low-k materials:
 - Their ability to absorb chemicals, such as contaminants containing polar O-H bonds due to their porous structure
 - Increase in k values, create adhesion problems, and cause reliability issues.
 - Signal propagation delays and cross-talk between interconnects
- Characterization of sorption behavior of new low-k films will assist in deciding their potential for successful integration in semiconductor processes

Research Objectives

- Determine the fundamentals of moisture interactions and outgassing in both uniform and non-uniform porous low-k films:
 - Loading
 - Transport, incorporation and removal of moisture in all forms in the matrix
 - Mechanism of interactions of moisture and organics with wafer surfaces
- Develop experimental and process modeling techniques for minimizing the chemical and energy usage during cleaning and purging of low-k films

Experimental Setup

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Experimental Procedure

Experimental procedure

Isothermal adsorption and desorption

Temporal profile

Exposure to 110 ppb moisture; followed by temperatureprogrammed desorption

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Comparison

Challenge Concentration: 56 ppb; Purge Time: 10 hr

14

Dynamics of Moisture Removal

Purge gas purity: 1 ppb

<u>p-MSQ samples:</u> A: 10s etch in N₂H₂, 20s ash B: 10s etch in HeO₂, 20s ash C: 10s etch in H₂, 20s ash

BD IIx samples: A: Blanket B: NH₃-plasma treated C: NH₃He-plasma treated

Moisture removal is a very slow process

<u>Moisture Transport Pathways</u> <u>in Porous Low-k Film</u>

Process Model for Predicting Impurity Concentration in Porous Low-k Film

Transport of moisture in matrix:

$$\frac{\partial C_S}{\partial t} = \frac{1}{1 - \varepsilon} \frac{\partial}{\partial z} [(1 - \varepsilon)D_S \frac{\partial C_S}{\partial z}] - \frac{\varepsilon}{1 - \varepsilon} k_m S_p (\frac{C_S}{S} - C_g)$$

Transport of moisture in pore:

$$\frac{\partial C_g}{\partial t} = \frac{1}{\varepsilon} \frac{\partial}{\partial z} \left[\varepsilon D_g \frac{\partial C_s}{\partial z} \right] + k_m S_p \left(\frac{C_s}{S} - C_g \right)$$

C_s / C_g: Moisture concentration in matrix / pore;

D_S / **D**_g: Moisture diffusivity in matrix / pore;

ε: Film porosity;

S_p: Specific surface area;

S: Moisture solubility in matrix;

k_m: Interphase transport coefficient between pore and matrix;

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Validation of Model

Sample: p-MSQ A, partial etch for 10s in N₂H₂ and 20s ash; Moisture challenge concentration: 1500 ppm; Temperature: 25 °C

Good agreement between the model and the experimental data

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

.17

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

.19

Outgassing Dynamics of IPA using FTIR

Outgassing Dynamics of IPA <u>using FTIR</u>

IPA Outgassing Comparison

Initially the samples were saturated with liquid IPA; Purge gas: UHP N₂; FTIR peak at 2950-3000 cm⁻¹ (-CH₃ stretching)

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

- □ FTIR looks a promising technique to study dynamics of impurity interaction with thin films.
- □ A novel cell was designed to study outgassing dynamics.
- □ IPA removal depend on the low-k type and the processing conditions.
- **Etching and ashing affects IPA interaction.**

Future Work

- **Extend this study for moisture interaction with low-k films.**
- □ Study the effect of multicomponent on outgassing dynamics.

Interaction of Molecular Contamination with EPSS Surface

Background

1. Moisture removal is a slow process in gas-distribution system.

Background

----Contd.

2. Surface adsorption and desorption, back diffusion, dead legs, and pressure fluctuation can cause fluctuation of moisture concentration in gas distribution system.

Research Objective

To develop a model that allows us to optimize the purge process for moisture contaminated gas distribution system, in other words, with shortest time and lowest chemical and energy cost.

Experimental Setup

Experimental Procedure

Temporal profile of moisture absorption/desorption

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 29

Model Development for Mass Transport in Cylindrical Tubing

Moisture sorption on tubing wall:

$$\frac{\partial C_S}{\partial t} = k_{ads} C_g (S_0 - C_S) - k_{des} C_S$$

Governing equation for gas phase:

$$\frac{\partial C_g}{\partial t} = D_L \frac{\partial^2 C_g}{\partial z^2} - u \frac{\partial C_g}{\partial z} + \frac{A_S}{V} (k_{des} C_S - k_{ads} C_g (S_0 - C_S))$$

- C_s : Moisture concentration on wall, mol/cm²;
- C_g : Moisture concentration in gas, mol/cm³;
- k_{ads} : Adsorption rate constant, cm³/mol/s
- k_{des} : Desorption rate constant, 1/s
- S_0 : Site density of surface sorption, # of sites/cm²;
- D_L : Dispersion coefficient, cm^2/s ;
- u: Velocity, m/s; A_s : Surface area of wall, m²; V: Volume of tubing, m³

Model Validation at Different

Concentrations

Purge gas flow rate: 350 sccm; Temperature: 25 °C; Purge gas purity: 1 ppb,

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effect of Purge Flow Rate

Challenge conc.: 181 ppb; Temperature: 25 °C ;Purge gas purity: 1 ppb; Length: 0.9 m

Effect of Purge Gas Purity

Challenge conc.: 181 ppb; Temperature: 25 °C; Flow rate: 350 sccm; Length: 0.9m

Effect of Purge Gas Temperature

Challenge conc.: 181 ppb; Temperature: 25 °C; Flow rate: 350 sccm; Purge gas purity: 1 ppb

 E_{ads} : ~ 19 kJ/mol; E_{des} : ~ 47 kJ/mol*

Model Application: Extension of Transfer Line

Challenge conc.: 181 ppb; Temperature: 25 °C; Flow rate: 350 sccm; Purge gas purity: 1 ppb

Moisture Distribution along the Tubing at Different Purge Times

Challenge conc.: 181 ppb; Temperature: 25 °C; Flow rate: 350 sccm; Purge gas purity: 1 ppb

Laterals

Governing equation for bulk gas:

$$U = 2U_{\text{avg}} \left[1 - \left(\frac{r}{R}\right)^2 \right]$$
 [1]

$$2u_{\rm avg} \left[1 - \left(\frac{r}{R}\right)^2\right] \frac{\partial C_g}{\partial z} + D_g \frac{\partial^2 C_g}{\partial z^2} + \frac{D_g}{r} \frac{\partial}{\partial r} \left(\frac{r \partial C_g}{\partial r}\right) = 0 \qquad [2]$$

The boundary conditions used for Eq. 2 are

 $C_{\rm g}=C_{\rm go} \quad {\rm at} \ z=0, \quad 0\leq r\leq R \eqno(3)$

$$C_{\mathrm{g}}$$
 = C_{g} at z = L , $0 \le r \le R$ [4]

$$\frac{\partial C_g}{\partial r} = 0 \quad \text{at } r = 0, \quad 0 \le z \le L$$
^[5]

$$-D_{g}\frac{\partial C_{g}}{\partial r} = k_{a}C_{g} - k_{d}C_{s} \quad \text{at } r = R, \quad 0 \le z \le L$$
 [6]

Governing equation for surface diffusion:

$$k_{\rm a}C_{\rm g}|_{\rm r=R} - k_{\rm d}C_{\rm s} + D_{\rm s}\frac{{\rm d}^2C_{\rm s}}{{\rm d}z^2} = 0$$
 [7]

$$C_{\rm s} = \frac{k_{\rm a}}{k_{\rm d}} C_{\rm g} \quad \text{at } z = 0$$
 [8]

$$C_{\rm s} = \frac{k_{\rm a}}{k_{\rm d}} C_{\rm g-} \quad \text{at } z = L$$
^[9]

Back diffusion direction

1: Bulk Convection

- 2: Surface diffusion
- 3. Bulk diffusion

<u>model</u>

Governing equation:

BC:

$$z=0, C_g = C_{g0}$$

 $z=L, C_g = 1ppb$

C_g: Moisture concentration in gas, mol/cm³;
D_L: Dispersion coefficient, cm²/s;
u: Velocity, m/s;

 C_{g0} : Ambient moisture concentration

2. Bulk diffusion

Back Diffusion at Laterals

----Contd.

Moisture profile along the lateral (Length: 2 m)

- 1. The combination of experiments and modeling we have developed helps in optimizing the dry-down time and lower the purge-gas and energy consumption during system startup or recovery.
- 2. This technique can be used to minimize the back diffusion problem.

1. Extend the application of the model

Single tubing \implies one lateral \implies More laterals

—> Complex gas delivery system

2. Effects of dead legs and pressure fluctuation

Acknowledgement

Dr. Farhang Shadman	Advisor, Regents Professor in Chemical Engineering and Optical Sciences Department, U of Arizona
Dr. Roger Sperline	Professor in Chemistry Department, U of A for helping with FTIR Analysis
Dr. Prashant Raghu	Process Engineer, Micron
Carl Geisert	Az/FSM Sr. Principal Engineer, Intel Corporation
Dr. Ting Tsui	Assistant Professor, U of Waterloo, formerly at Texas Instruments
Sematech (Interconnect Group)	For partial support of this research
Texas Instruments (SiTD)	
Intel Corporation	
SRC/Sematech ERC	
for Environmentally Benign Semiconductor Manufacturing	

cingi oc mconuu S

42