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�HfO2 and ZrO2 have higher IPA adsorption loading than SiO2

� IPA loading order: ZrO2 > HfO2 > SiO2

� Same trend was observed over a wide range of concentrations
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� Presence of one contaminant can affect 

adsorption/desorption characteristics of other

� Moisture hydroxylates oxide surfaces; the 

hydroxyl groups change the nature of the surface

� Pre-adsorbed moisture enhances IPA adsorption 

on SiO2, but reduces IPA adsorption on HfO2 and 

ZrO2

� IPA is more attracted to bare HfO2 and ZrO2

surfaces than to hydroxylated surfaces.  Presence 

of H2O reduces their affinity for IPA

Experimental Procedure

Step 1. Moisture challenge (conc: 56 ppb)

Step 2. IPA challenge (conc: 107 ppb)
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Effect of PreEffect of Pre--Adsorbed Moisture on IPA Adsorbed Moisture on IPA 

Loading Loading 
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D2O-covered surface exposed to IPA
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� C3H7DO (m/e = 46) formed when IPA is 

introduced on D2O-covered ZrO2

� C3H7DO may be formed by surface 

interactions between IPA and D2O

� C3H7DO is also formed in the APIMS 

plasma (source) from interactions between 

IPA and D2O

� Sample-gas ionization in the APIMS is 

accomplished by electron impact at 

atmospheric pressure

� Extensive collisions among molecules in 

the APIMS plasma source produce 

intermediate species (for example, 

C3H7DO)

� A technique was required to characterize 

and separate post-reactor interferences due 

to plasma effect

C3H7DO

m/e = 46

H3C CH3

CH

OD

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Interaction of IPA with Interaction of IPA with HyroxylatedHyroxylated

Surfaces Surfaces 



6

CH3–CH–CH3
|

OH

H

O

CH3–CH–CH3
|

OH

H

O

H

O

CH3–CH–CH3
|

O

|

A

H2O

H2O

CBX X X X

H2O

H2O

Vacant surface site (Metal atom)

Chemisorbed hydroxyl group

Surface physisorbed IPA

Surface chemisorbed IPA

X

A

B

C

Oxide surface

Low Concentration Low Concentration MulticomponentMulticomponent

Adsorption Model Adsorption Model 

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing



7

� ZrO2 was shown to form the strongest metal-hydroxyl (M-OH) 

bond and adsorb IPA stronger than SiO2 and HfO2

� ZrO2 should not be the material of choice from the standpoint of 

molecular contamination

� Isotope labeling with D2O indicated chemisorption of IPA on 

hydroxylated surfaces via an esterification reaction

ConclusionConclusion
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Contamination Behavior of LowContamination Behavior of Low--k k 

MaterialsMaterials
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• Low-k inter-layer dielectrics (ILD) are highly prone to molecular 

contamination, especially if it porous

• Potential issues associated with molecular contamination of low-k 

materials:

- Their ability to absorb chemicals, such as contaminants       

containing polar O-H bonds due to their porous structure 

- Increase in k values, create adhesion problems, and cause  

reliability issues.

- Signal propagation delays and cross-talk between interconnects

• Characterization of sorption behavior of new low-k films will assist in   

deciding their potential for successful integration in semiconductor 

processes
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Research ObjectivesResearch Objectives
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• Determine the fundamentals of moisture interactions and outgassing in both 

uniform and non-uniform porous low-k films:

• Loading 

• Transport, incorporation and removal of moisture in all forms in the 

matrix

•Mechanism of interactions of moisture and organics with wafer 

surfaces

• Develop experimental and process modeling techniques for minimizing the 

chemical and energy usage during cleaning and purging of low-k films



11

Experimental SetupExperimental Setup

Zero gas line

Reactor

MFC 5

Sample gas line B

Direct Injection System
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• Atmospheric Pressure Ionization 

Mass Spectrometer (APIMS)

• Cavity Ring Down Spectroscope 

(CRDS)

• Electron Impact Mass 

Spectrometer (EIMS)

• Fourier Transform Infrared 

Spectrometer (FTIR)
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Experimental ProcedureExperimental Procedure

Experimental procedure

Isothermal adsorption and 

desorption
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Challenge Concentration: 56 ppb;  Purge Time: 10 hr

Moisture Loading and Retention Moisture Loading and Retention 

ComparisonComparison

Porous low-k films have 

much higher sorption 

loading than SiO2

Moisture removal is a very 

slow process
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Dynamics of Moisture RemovalDynamics of Moisture Removal

Purge gas purity: 1 ppb

Time, h

Moisture removal is a very slow process
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p-MSQ samples:

A: 10s etch in N
2
H
2
, 20s ash

B: 10s etch in HeO2, 20s ash

C: 10s etch in H2, 20s ash
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Moisture Transport PathwaysMoisture Transport Pathways

in Porous Lowin Porous Low--kk FilmFilm

Gas flow

Porous low-k film

Substrate

Exchange between 

matrix and pores

Desorption from 

matrix

Permeation in matrix

Transport 

in pores
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Transport of moisture in matrix:

)(
1

])1[(
-1

1
g

S
pm

S
S

S C
S

C
Sk

z

C
D

zt

C
−

−
−

∂

∂
−

∂

∂
=

∂

∂

ε

ε
ε

ε

Transport of moisture in pore:

)(][
1

g
S

pm
S

g

g
C

S

C
Sk

z

C
D

zt

C
−+

∂

∂

∂

∂
=

∂

∂
ε

ε

CS / Cg: Moisture concentration in matrix / pore; 

DS / Dg: Moisture diffusivity in matrix / pore; 

ε: Film porosity; 

Sp: Specific surface area; 

S: Moisture solubility in matrix; 

km: Interphase transport coefficient between pore and matrix; 

zL

Substrate

Low-k Layer
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Process Model for Predicting Impurity Process Model for Predicting Impurity 

Concentration in Porous LowConcentration in Porous Low--k Film k Film 
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Validation of Model Validation of Model 

Good agreement between the model and the experimental data
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Sample: p-MSQ A, partial etch for 10s in N2H2 and 20s ash; 

Moisture challenge concentration: 1500 ppm; Temperature: 25 oC
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Cell Design
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SIDE VIEW
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Purge Dynamics of IPA in Empty CellPurge Dynamics of IPA in Empty Cell
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BD IIx, NH3He-plasma treated, k~2.6
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Peak Area: 2950 – 3000 Wave number

OutgassingOutgassing Dynamics of IPA Dynamics of IPA 

using FTIRusing FTIR

BD IIx, NH3He-plasma treated, k~2.6

IPA removal is a slow process
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IPA IPA OutgassingOutgassing Comparison Comparison 

Initially the samples were saturated with liquid IPA; Purge gas: UHP N2; 

FTIR peak at 2950-3000 cm-1 (-CH3 stretching)
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� FTIR looks a promising technique to study dynamics of impurity 

interaction with thin films.

� A novel cell was designed to study outgassing dynamics.

� IPA removal depend on the low-k type and the processing 

conditions.

� Etching and ashing affects IPA interaction.

ConclusionConclusion
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Future WorkFuture Work

� Extend this study for moisture interaction with low-k films.

� Study the effect of multicomponent on outgassing dynamics. 
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Interaction of Molecular Interaction of Molecular 

Contamination with EPSS SurfaceContamination with EPSS Surface
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Background 
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1. Moisture removal is a slow process in gas-distribution system.
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2.  Surface adsorption and desorption, back diffusion , dead legs, and 

pressure fluctuation can cause fluctuation of moisture 

concentration in gas distribution system.

Background

H20 in Bulk O2 End of Main
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To develop a model that allows us to optimize the purge 

process for moisture contaminated gas distribution system, in 

other words, with shortest time and lowest chemical and 

energy cost.

Research Objective 

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
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Experimental Setup

Zero gas line

Tubing

Sample gas line B
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Sample gas line A
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Experimental Procedure

Temporal profile of moisture absorption/desorption

Adsorption at 25 ºC;

Desorption at 25 ºC;

Challenge Conc.: 56 ppb

O
u
tl
e
t 
G
a
s 
M
o
is
tu
re
  
C
o
n
c
.,
 

p
p
b

Time, h

0         5         10       15       20        25        30    35      

10

20

30

40

50

60

70

0

absorption

Moisture absorbed

Moisture desorbed

desorption



30SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Model Development for Mass 

Transport in Cylindrical Tubing

Moisture sorption on tubing wall:
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Governing equation for gas phase:

CS:  Moisture concentration on wall, mol/cm2;

Cg: Moisture concentration in gas, mol/cm3;

kads: Adsorption rate constant, cm
3/mol/s

kdes: Desorption rate constant, 1/s

S0: Site density of surface sorption, # of sites/cm
2; 
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u: Velocity, m/s;  AS: Surface area of wall, m
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Purge gas flow rate: 350 sccm; Temperature: 25 ºC; 

Purge gas purity: 1 ppb, 

Model Validation at Different 

Concentrations
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Challenge conc.: 181 ppb; Temperature: 25 

ºC ;Purge gas purity: 1 ppb; Length: 0.9 m
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Challenge conc.: 181 ppb; Temperature: 25 ºC; Flow rate: 350 sccm; Length: 0.9m
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Challenge conc.: 181 ppb; Temperature: 25 ºC;           

Flow rate: 350 sccm; Purge gas purity: 1 ppb
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Challenge conc.: 181 ppb; Temperature: 25 ºC;                              

Flow rate: 350 sccm; Purge gas purity: 1 ppb
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Challenge conc.: 181 ppb; Temperature: 25 ºC;  

Flow rate: 350 sccm; Purge gas purity: 1 ppb
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Governing equation for bulk gas:

Governing equation for surface diffusion:

Cg∞ Cg0

Gas flow direction

Back diffusion direction

Z =L Z =0

3
1

2

1: Bulk Convection

2: Surface diffusion

3. Bulk diffusion

Model Application: Back Diffusion at 

Laterals
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Back Diffusion at Laterals-Simplified 

model
Governing equation:

Cg: Moisture concentration in gas, mol/cm
3;

DL: Dispersion coefficient, cm
2/s;

u: Velocity, m/s;  

Cg0: Ambient moisture concentration
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Moisture profile along the lateral ( Length: 2 m)
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1: Bulk Convection

2. Bulk diffusion
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1. The combination of experiments and modeling we have 

developed helps in optimizing the dry-down time and lower 

the purge-gas and energy consumption during system start-

up or recovery.

2. This technique can be used to minimize the back diffusion 

problem.

Conclusion
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1. Extend the application of the model 

Future Work
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2. Effects of dead legs and pressure fluctuation

Single tubing one lateral More laterals 

Complex gas delivery system 
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