

Environmentally Benign Development of Standard Resists in Supercritical Carbon Dioxide Using CO₂ Compatible Salts

ERC Teleseminar October 30th 2008

Abhinav Rastogi,¹ Gregory Toepperwein,²

¹ Cornell University
 ² University of Wisconsin, Madison

Outline of the experimental work

- Background
 - Lithography (Key problems)
 - Supercritical CO₂ (Basics, Advantages)
 - Previous work using scCO₂
 (fluorinated resists, molecular glasses, additives)
- Fluorinated Quaternary Ammonium Salts (QAS) as supercritical CO₂ compatible additives
 - Design and Synthesis of QAS
 - Dissolution test of standard EUV/DUV resists
 - EB-patterning and development in QAS/scCO₂ solution
- Conclusions (experimental results)
- Computational Simulations (G. Toepperwein)

Photolithographic Process

Abhinav Rastogi

Ober group, Cornell University

Next Generation Lithography: Key Problems

T. Tanaka et al., *JJAP* **1993**, 32, 6059.

Abhinav Rastogi

Supercritical CO₂ Basics

Below critical point – separate liquid and gas phases

Near critical point – meniscus begins to fade

- Environmentally safe
- Tunable solvent strength
- Low viscosity and surface tension
- Chemically stable
- Abundant and cheap

Above critical point – no meniscus, homogeneous phase

A. I. Cooper, J. Mater. Chem. 2000, 10, 207-234.

5

Advantages of scCO₂ development

Abhinav Rastogi

Cornell Univ. Ober group

scCO₂ Soluble Photoresists

 \mathbf{H}^+

hν

Fluoro polymers

٠

Insoluble

N. Sundararajan, C. K. Ober, et al., Chem. Mater. 2000, 12, 41.

Molecular glasses

N. Felix, K. Tsuchiya, C. K. Ober, Adv. Mater. 2006, 18, 442-446.

Recent result - scCO₂ development of "Noria-boc" -

Noria-boc is insoluble in TMAH, Noria is soluble in TMAH. Collaboration with Prof. Nishikubo / Kudo group (Kanagawa University)

EB-patterned 'Noria-Boc' developed in 0.26 N TMAH (EB dose 76.8 μ C/cm², PAB 115 °C 60 s, PEB 140 °C 150 s, development 60 s)

H. Kudo, T. Nishikubo, et al., *Angew. Chem. Int. Ed.* 2006, 45, 7948.
C. K. Ober, T. Nishikubo, et al., Proc. of SPIE, 2007, 6519, 65194B 8

Recent result - scCO₂ development of "Noria-boc" -

 $scCO_2$: development for 30 min at 50°C, 5000 psi. TMAH: developemnt for 60 sec with 0.26 N TMAH.

Noria-boc showed negative tone property in $scCO_2$.

Dose: 150 um/cm², development for 15 min at 50°C, 5000 psi, pure $scCO_2$ flow 30 min.

9

Additives for scCO₂ to develop conventional resists

Addition of acetone as a co-solvent

- Non-fluorine polymer was dissolved in $scCO_2$.
 - Increase solvent density
- Tune polarity of fluid

C. K. Ober, K. K. Gleason, et al., JVST B. 2004, 22, 2473-8.

scCO₂ Compatible Salts

Micell Integrated Systems developed a new additive for scCO₂.

$(R)_a(R')_b N^+X^-$

where a + b = 4, and R' is a partially fluorinated alkyl or aryl group, and X- is the counter anion

M. Wagner, et al., *Proc. of SPIE* **2006**, 6153, 615311, *Proc. of SPIE* **2006**, 6153, 615345, *Proc. of SPIE* **2006**, 6153, 615346, *Proc. of SPIE* **2006**, 6153, 61533W, *Proc. of SPIE* **2007**, 6519, 651948.

Quaternary Ammonium Salts (QAS)

scCO₂ Compatible Additives: Fluorinated Quaternary Ammonium Salts (QAS) Examples of fluorinated QAS High affinity to Deprotonate from CH₃COO[⊖] phenolate and/or OH and/or COOH CH₃COO in polymer resists carboxylate moieties in polymer resists ĊH₂ ĊF₂ CF_3 CF3 RCOO CF2 Help to dissolve this salt in scCO₂ $R = CH_3$ $CH_3(CH_2)_5$ CF_3 $CF_3(CF_2)_5$ CF3 $CF_{3}(CF_{2})_{2}(CH_{2})_{2}$

Some of the fluorinated ammonium salts form *Micelle* in scCO₂.

<u>Abhinav Rastogi</u>

Synthesis of QAS

Other QAS were obtained by changing the amine and/or counter anions.

Series of QAS synthesized and tested as additives

A series of standard EUV / DUV resists

PBOCST

From TOK

EUV-P568 : Old EUV resist made from PHOST based polymer with t-Boc

EUVR-P3015 : Molecular glass resist

EUVR-P1123 : One of the latest EUV resist made from PHOST based polymer with bulky protecting group

TARF-P6111 : ArF (193 nm) resist made from poly(methacrylate) backbones.

All of these resists are insoluble in $scCO_2$ at any temperatures and pressures.

Abhinav Rastogi

Cornell Univ. Ober group

Experimental Procedure

Steps involved in finding the appropriate QAS:

- 1) Synthesize and check the solubility of the salt in scCO₂. (50 °C and 5000 psi).
- 2) Check the effect of the salt on standard polymer resist.

(Dissolution rate monitor)

- 3) Measure the change in thickness by profilometer.
- 4) Development of EB-patterned Resists with appropriate QAS.

Abhinav Rastogi

Cornell Univ. Ober group

Dissolution monitoring and contrast curves

Abhinav Rastogi

Dissolution Results of model resists with QAS

QAS	Resist	Unexposed	Exposed	note
CH ₃ COO $\stackrel{\oplus}{\to}$ N-(CH ₂) ₃ -(CF ₂) ₅ -CF ₃ (CH ₂) ₃ (CF ₂) ₅ CF ₃ QAS-4 (1.25 mM)	PBOCST	Dissolution (40 nm/min)	Slow dissolution (1-4 nm/min)	Negative tone resist
	ESCAP (Du Pont)	Dissolution (25 nm/min)	No dissolution	Negative tone resist
	PMAMA-co- GBLMA (Mitsubishi Rayon)	No dissolution	No dissolution	
	EUV-P568 (TOK)	Dissolution (15 nm/min)	Slow dissolution (1-2 nm/min)	Negative tone resist
$CF_{3}CF_{2}COO^{\ominus}$ $-(CH_{2})_{3}-(CF_{2})_{5}-CF_{3}$ $(CH_{2})_{3}$ $(CF_{2})_{5}$ CF_{3} QAS-7 (1.25 mM)	PBOCST	No dissolution	No dissolution	
	ESCAP (Du Pont)	No dissolution	No dissolution	
	PMAMA-co- GBLMA (Mitsubishi Rayon)	No dissolution	No dissolution	
	EUV-P568 (TOK)	Dissolution (45 nm/min)	Slow dissolution (<1 nm/min)	Negative tone resist

Exposed by UV lamp (254 nm, 24 mC/cm²), developed in scCO₂ at 50°C and 5000 psi.

Electron Beam (EB)-Patterning

Development test of EB-patterned TOK resist (EUV-P568) with QAS-4 or QAS-7

Dose: 107 um/cm², QAS-4 (1.25 mM), dev. for 60 min at 50°C, 5000 psi, flow 30 min

Pattern with sub-100 nm feature sizes were obtained.

Dose: 20 um/cm², QAS-7 (1.25 mM), dev. for 60 min at 50°C, 5000 psi, flow 30 min

Simulation

- Rational design of QAS for scCO₂ development
 - Use molecular interaction to predict and control solubility outcomes
 - Connection to Experiement
- Methods
 - QAS solubility
 - Dissolution enchantment
 - QAS behavior
- Results

Stoykovich, Cao, Yoshimoto, Ocola, Nealey, Advanced Materials 15 1180 (2003)

Model I

- OPLS force field employed for most parameters
- Process Conditions: T = 340K (~67°C) P = 345 bar

$$0.32 -0.32 \\ O = C = O \\ 0.65 \\ 0.65$$

Model II 0.12H Η H -0.29 0.14H -H0.08 0.10 H-0.09 N-0.35^H 0.17 Н ć-0.28C Η H ^{0.16} H_-0.29 Η Н ^{0.18} H -0.29C -F_{-0.22} Ή H F Н C_{0.54} F F 0.40 •F_{-0.22} F -0.22 F F -F_0.22 -0.22 F F -0.20 F -F F 0.58 F

- We calculated charges (qi) using 0 quantum mechanics
- Charge interactions vital to description of QAS
- When possible, polymer charges 0 calculated on trimers, and middle polymer used

Salt Solubility

- g(r) is the local density as a function of distance from a fixed point
- Γ is the solubility enhancement factor
 - $\Gamma > 0 \rightarrow \text{miscible}$ $\Gamma < 0 \rightarrow \text{immiscible}$
- Screened possible salts by scCO₂ solubility

Salt Solubility – Cation Choice

System	Р Г	artial Molar Vol [cm ³ /mol]
C1 – A1	-1.44	24.15
C1 – A2	-0.391	23.53
C1 – A3	0.957	19.32
C2-A1	0.83	18.49
C2 – A2	0.14	21.44
C2 – A4	2.08	12.68
C2– A5	13.57	9.74
C3 – A1	11.52	15.06
C4 – A1	-3.60	24.31

- Eliminate unpromising salts
- Identified "best" cation

Ethyl-Methyl

Thin Film Methods I

Thin Film Methods II

Classes of Salt Behavior

Contact Analysis Method

Systems of Interest – Polymer Resists

ESCAP

• The –OH group of ESCAP associates with the anions.

- Purple ESCAP
- Green Fluorine (QAS-A2)
- Cyan Carbon (QAS-A2)
- Red Oxygen (QAS-A2)
- White Hydrogen (QAS-A2)

Contact Analysis – ESCAP (hPS)

QAS-A2 Anion

193nm-Resist Results

QAS-B4

QAS-B4

Conclusions

- ESCAP (model)
 - Simulation: Only soluble in QAS-A2
 - Experimental: Confirmed

$$CH_{3}COO^{\ominus}$$

 $N-(CH_{2})_{3}-(CF_{2})_{5}-CF_{3}$
 $(CH_{2})_{3}$
 $(CF_{2})_{5}$ QAS-A2
 CF_{3}

- 193nm-resist (model)
 - Only soluble in QAS-B4
 - Simulations guiding experiment

- Methods of investigation
 - Dissolution rate measurement
 - Contrast curves
 - Computation simulations

Conclusions

- Use of scCO₂ use as a solvent improves LER and eliminates pattern collapse.
- Conventional and EUV polymer resists can be realized with fluorinated quaternary ammonium salts (QAS) as additives to scCO₂.
- QAS design
 - Amount of fluorination and choice of anion important.
 - Asymmetric architectures are favorable

Acknowledgements

Richard Schenker, Michael J Leeson, Alan M Myers

Manabu Tanaka

Prof. Juan J de Pablo Group (Univ. of Wisconsin, Madison) Robert A. Riggleman, Gregory N. Toepperwein

Jesse Q. Bond

IMEC Jacob Adams

Prof. Tadatomi Nishikubo and Prof. Hiroto Kudo (Kanagawa Univ.)

Takeshi Iwai

imec

Ryan Callahan **FUJ:FILM**

Intel

