Electrocoagulation and Water Sustainability: Silica and Hardness Control

James C. Baygents and James Farrell Department of Chemical and Environmental Engineering The University of Arizona Tucson, AZ 85721

Teleseminar

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

26 June 2008

Outline

- Brief description of EC
- Motivation (work is jointly funded by Intel Corporation and U Arizona WSP)
 - Intel's perspective
 - Arizona/Desert SW perspective
- Contaminant Removal Mechanisms
- Operating Parameters: Dose
- Dose response and scale-up:
 - bench & pilot studies on RO reject and cooling tower blowdown
 - results for removal of silica and hardness cations (Ca, Mg)
- Costs to deliver dose
- Summary

Electrocoagulation (EC): The Idea

Metal anode dissolution is coupled to a complementary cathodic reaction that generates OH⁻; metal hydroxides form and adsorb dissolved contaminants

EC is thus a salt-free, ~pH-neutral process that avoids the added counterions of standard coagulating agents, such as $Fe(CI)_3$ and $AI_2(SO_4)_3$

Electrocoagulation (EC): The Idea

Metal anode dissolution is coupled to a complementary cathodic reaction that generates OH⁻; metal hydroxides form and adsorb dissolved contaminants

EC is thus a salt-free, ~pH-neutral process that avoids the added counterions of standard coagulating agents, such as $Fe(CI)_3$ and $AI_2(SO_4)_3$

Some Virtues of EC

- EC can remove a wide range of inorganic, organic and particulate contaminants.
- Coagulation has a long history of effectiveness as the standard treatment method for removing natural organic matter, dissolved solids, particulates and microorganisms from drinking water
- Low operating costs compared to membrane separations
- Metal hydroxide precipitates have large specific surface area (~500m²/g); contaminants are physically or chemically adsorbed

- Mg, 4-6 mg/L
- phosphate, 15-20 mg/L
- TDS, 620-815 mg/L

Cooling Tower Blowdown (CTB)

- silica, 40-50 mg/L (100-140 mg/L max)
- Ca, 17-23 mg/L
- Mg, 4-6 mg/L
- phosphate, 15-20 mg/L
- TDS, 620-815 mg/L

TNT Technology Company (2003) 1st CASS Report, Appendix M

Motivation: The Tucson/AZ Perspective

Water Demand/Supply in the TAMA

Approximate Decline in Groundwater Levels 1940-1995

Water Resources Research Center, College of Agriculture, The University of Arizona

Colorado River Basin and River Allocations

Allocation of Colorado River (M	IAF per year):
Upper Basin States	7.5
Lower Basin States	
California	4.4
Arizona	2.8
Nevada	<u>0.3</u>
Lower Basin Total	7.5

Colorado River Flows

Water Quality and the Colorado River

WATER QUALITY CONSTITUENT	TUCSON WATER AVRA VALLINGELLS	TUCSON WATER PRODUCTION WELLS	RAW CAP WATER	SECONDARY EFFLUENT	RECLAIMED WATER	EPA DRINKING WATER STANDARDS
Sodium (mg/l)	41.0	40.1	96.7	112	122	None
Fluoride (mg/l)	0.39	0.36	0.425	0.80	0.93	4.0 (MCL)
Total Dissolved Solids (mg/l)	210	282	611	547	655*	500 (SMCL)
Hardness (as CaCO3) (mg/l)	84	129	266	141	217	None
Alkalinity (as CaCO3) (mg/l)	124	129	105	229	222	None
pН	8.1	8.0	8.12	7.35	7.0	6.5-8.5 (SMCL)
Total Trihalomethanes	No Data	<5.0	<1.83	<3.24	<11.4	100 (MCL)

*Reclaimed water includes groundwater recovered from the Sweetwater US&R Facility. Ambient groundwater is high in TDS. MCL-MaximunContaminant Level (EPA Primary Standard) SMCL-SecondaryMaximum Contaminant Level

SourcesAdaptedfromRegionalRechargeCommitteeTechnicaReportArizona DepartmentofWater ResourcesTucsonActive ManagementArea, 1996.

15

Estimated Annual Salt Balance in Phoenix Metropolitan Area

Entering Phoenix Metro	Volume (ac-ft)	TDS (mg/L)	Salt (tons)
Groundwater	37,000	680	34,218
SRP	810,000	480	528,768
САР	752,000	650	664,768
Gila River	90,000	550	67,320
Agua Fria River	50,000	400	27,200
Society	290,000	300	118,320
Agricultural fertilizer			22,500
Total			1,463,094
Exiting Phoenix Metro	Volume (ac-ft)	TDS (mg/L)	Salt (tons)
Groundwater	28,000	1,100	41,888
Gila River	100,000	2,370	322,320
Total			364,208
Salt Load			1,098,886

Water Quality and the Central Arizona Salinity Study (CASS)

Projected final location of salts imported into the Phoenix Metro area

16

Arizona Reservoir Levels in May 2007

What Limits Water Recovery? Permeate 0.2 90% Feed Water 0.18 Barium Concentration (mg/L) 0.16 0.17 0.17 0.07 0.00 0.04 0.00 0.04 85% RO Recovery (%) Concentrate Permeate Flow 70% \times 100 % Recovery = 0.02 Feed Flow 65% 0 Jul-02 Jan-04 Jul-05 Jul-99 Jul-96 Jan-98 Jan-01 Date *Based on 60x K_{so} for BaSO₄ SO **FEED** Fe Ho Me Concentrated **FLOW** Salts C Ha H_{a} Permeate 18

Augmenting Arizona's Water Supplies

In-State Options

- Increased reuse of reclaimed water
- Additional transfers of Colorado River supplies

Out-of-State Options

- Interbasin transfer of Columbia River Basin water via Colorado River Basin
- Water exchange with California Pacific Ocean desalinated water for Colorado River water
- ✓ Water exchange with Mexico Gulf of Mexico desalinated water for Colorado River water

Contaminant Removal Mechanisms

Fe(III) & AI(III) Hydroxides form Charged Octahedral Structures

Octahedral structures combine to form amorphous precipitates or crystalline solids

Contaminant Removal Mechanisms

Ferric hydroxides bind and release protons according to the two reactions:

$$FeOH + H^+ \rightleftharpoons FeOH_2^+ \qquad K_{a1} = 10^{-7.18}$$
$$FeOH \rightleftharpoons FeO^- + H^+ \qquad K_{a2} = 10^{-8.82}$$

Contaminant Removal Mechanisms

Orthosilicate anion (SiO_4^{4-}) chemically adsorbed to ferric hydroxide binding site. The chemical reaction involves replacing the two OH- ions at the top of the structure with SiO_4^{4-}

Oxyanions that are tetrahedrally coordinated (*e.g.*, SiO_4^{4-}) form bidentate corner sharing complexes with ferric hydroxide octahedra

$$2(\equiv FeOH) + H_4SiO_4 + H^+ \leftrightarrow \equiv Fe_2H_3SiO_4^+ + 2H_2O \quad K = 10^{-10.03}$$

Examples of oxyanions that are removed via chemical adsorption include: orthosilicate, arsenate, *etc.*

Alkaline Earth (+2) Cations Physically Adsorb to Charged Sites on Fe(III) and Al(III) Hydroxides

Calcium ion physically adsorbed to ferric hydroxide via electrostatic attraction to oxygen atoms that carry a partial negative charge

Removal Mechanisms

Physical adsorption - hydrophobic organic solvents, microorganisms, polyvalent cations, oils, grease

- ion adsorption is very sensitive to pH (charge on the solids)
- hydrophobic organic adsorption is insensitive to pH

Chemical adsorption - oxyanions, natural organic matter (humic acids), metal oxides

• pH sensitivity less than for physical adsorption

Minteq Modeling

Silica removal

Arsenic (v) removal

- Model: Ferrihydrite triple plane model from Minteq database. Specific Surface Area: 750 m²/g; inner capacitance: 1.3 F/m²; outer capacitance: 5 F/m².
- Site density need to be adjusted to fit the experimental data for silica and arsenate removal.

Quantum Chemistry Modeling of Oxyanion Removal: Protonation of Binding Sites as a Function of pH

 $FeOH + H^+ \rightleftharpoons FeOH_2^+ \qquad K_{a1} = 10^{-6.37}$ $FeOH \rightleftharpoons FeO^- + H^+ \qquad K_{a2} = 10^{-9.67}$

From quantum chemistry calculation: △G_f for FeOH, FeOH₂⁺ and FeO⁻ are -415.72, -424.41, -402.52 kcal/mol, respectively.

Quantum Chemistry Modeling of Oxyanion Removal

 $2\left(\equiv FeOH\right) + H_4SiO_4 + H^+ \leftrightarrow \equiv Fe_2H_3SiO_4^+ + 2H_2O_4^+ + 2H$

Silica removal

Tron (Hydrogen

(initial concentration: 1.8 mM)

(initial concentration: 1.8 mM)

silica and arsenate removal

Contaminant Removal Experiments: Parameters to Consider

Operational variables that may affect EC performance are:

- Coagulant dose and type (e.g. Al vs. Fe)
- pH value (5-7-9; CTB 7.5-8.0; ROR 7.8-8.2)
- Post EC clarification or filtration method
- Organic compound concentrations (CTB additives)
- Solution ionic strength
- Hydraulic residence time (rate of dosing)
- Degree of mixing
- Scale of the EC reactor (1 L/min vs. 20 L/min)

- Ideal AI pH range: 5.8 to 7.8
- Ideal Fe pH range: > 4

Bench Tests: 1 L/min EC Device

- •Working electrode dimensions: $3.178 \text{ cm} \times 34.04 \text{ cm}$
- •Space between electrodes: 0.4 cm
- •Nominal† electrode thickness: 0.318 cm
- •Working volume: 0.35 L
- •Applied current: 0.1–0.8 A
- •Volumetric flow rate: 0.35 LPM
- •Residence time: 60 sec
- •Number of electrodes/channels: 9/8

effluent gravity-settled or filtered (0.45μm, 0.8μm, 10μm)

20 L/min Pilot (Intel site @ Ronler Acres,OR)

20 L/min Pilot (Intel site @ Ronler Acres,OR)

Dosing Tests

anodic current density = (current) / (electrode area)

dose = (dose rate) x (electrode area) x (hydraulic detention time)

- Power requirements are dominated by Ohmic losses in solution.
- Lower power requirement for Fe versus AI at a fixed Ω .

Fe Dose Response: Pilot vs. Bench

Silica removal from CTB

Charge Loading (C / L)

Ca, Mg removal from CTB

Agreement between results in bench and pilot units on CTB w/ Fe
Implication is that scale-up can be based on dose (bench ~60x bigger)
Ca, Mg removal is but 10 to 30% at economically feasible doses

Al Dose Response: Pilot vs. Bench

Silica removal from CTB and ROR

cathode fouling in pilot unit

Fouling of cathodic surfaces encounteredAluminosilicates?

Summary

•Oxyanions are cost effectively removed by AI or Fe electrodes; we have examined the removal of silica, phosphate and arsenic and obtained >90% removal

•Effective coagulant dose levels are on the order of 1-3 mM for the waters tested

•Hardness cations can be removed by anodically generated iron and aluminum hydroxide precipitates, but typically the dose levels required are not economically justified

• Scale-up from bench to pilot EC units can be predicated on Fe-dose for the waters studied; severe fouling was encountered w/ AI electrodes

•Currently, we are developing electrochemical methods for hardness ion removal (ELIXR)

Acknowledgements

Intel - Allen Boyce, Avi Fuerst, Zoe Georgousis, Len Drago

U of A - Matt Schulz, Zheng Gu, Lily Liao, Aaron Solt, Jake Davis, Brian Weaver Ritika Mohan, Brian Chaplin

ASU - John Crittenden, Yongshon Chen, Steven Whitten

AWI - Chuck Graf

Quantum Chemistry Calculations

- Density functional theory (DFT) calculations performed using DMOL³ code from Accelrys.
- Unrestricted GGA calculations using VWN-BP functionals.
- All electron calculations performed with double-numeric with polarization (DNP/DMOL3) basis sets.
- Solvation effects incorporated using the COSMO-ibs polarized continuum model.

Compositions of streams (mM)

	СТВ	ROR	UA Synthetic
рН	7.5-8.0	7.8-8.2	7-8
Silica	1.42-1.78	2.31-2.67	1.80
Calcium	0.42-0.57	0.75-0.87	0.99
Magnesium	0.16-0.25	0.33-0.49	0.49

EC versus Conventional Coagulation

- Chemical coagulation uses alum or ferric chloride salts
 - Alum typically sold as $KAI(SO_4)_2 \cdot 12(H_2O)$
 - Ferric chloride typically sold as $FeCl_3 \cdot 6(H_2O)$
- Alum and ferric chloride contribute salinity increasing counter-ions
 - 8.57 g of undesired solids per g of aluminum in potassium alum
 - 1.91 g of undesired solids per g of iron in ferric chloride
 - EC adds no undesirable counter-ions
- > Alum and ferric chloride contain very little coagulant on a per mass basis
 - 114 lbs of aluminum per ton of alum
 - 413 lbs of iron per ton of ferric chloride
 - EC yields one lb of coagulant per lb of electrode
- Formation of precipitates from Fe and AI salts decreases pH values
 - 2 mM dose of Fe drops pH by 1.5 units
 - 2 mM dose of AI drops pH by 3 units
- Post coagulation pH adjustments are needed with AI and Fe salts
 - Post coagulation pH adjustments are not needed with EC