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Outline
• Brief description of EC
• Motivation (work is jointly funded by Intel Corporation and U Arizona WSP)

– Intel’s perspective
– Arizona/Desert SW perspective

• Contaminant Removal Mechanisms
• Operating Parameters: Dose
• Dose response and scale-up: 

– bench & pilot studies on RO reject and cooling tower blowdown
– results for removal of silica and hardness cations (Ca, Mg)

• Costs to deliver dose
• Summary
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Electrocoagulation (EC): The Idea

Metal anode dissolution is coupled to a complementary
cathodic reaction that generates OH−; metal hydroxides 
form and adsorb dissolved contaminants

EC is thus a salt-free, ~pH-neutral process that avoids the 
added counterions of standard coagulating agents, such 
as Fe(Cl)3 and Al2(SO4)3

Bu
lk
 F
lo
w

Fe
2+
/3
+ 
io
ns
 

Ir
on

  A
no

de
 

Fe hydroxide 
precipitate

target solute
(e.g. silica)

Ir
on

  C
at
ho

de

O
H
−
io
ns
 



4

Electrocoagulation (EC): The Idea

Metal anode dissolution is coupled to a complementary
cathodic reaction that generates OH−; metal hydroxides 
form and adsorb dissolved contaminants

EC is thus a salt-free, ~pH-neutral process that avoids the 
added counterions of standard coagulating agents, such 
as Fe(Cl)3 and Al2(SO4)3

Bu
lk
 F
lo
w

Fe
2+
/3
+ 
io
ns
 

Ir
on

  A
no

de
 

Fe hydroxide 
precipitate

target solute
(e.g. silica)

Ir
on

  C
at
ho

de

O
H
−
io
ns
 

Some Virtues of EC

• EC can remove a wide range of 
inorganic, organic and particulate 
contaminants.

• Coagulation has a long history of 
effectiveness as the standard treatment 
method for removing natural organic 
matter, dissolved solids, particulates and 
microorganisms from drinking water

• Low operating costs compared to 
membrane separations

• Metal hydroxide precipitates have large 
specific surface area (~500m2/g); 
contaminants are physically or 
chemically adsorbed
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Motivation: The Intel Perspective, Water 
Reclaim in Semiconductor Manufacturing

Primary UPW System

Fab UPW Utilization

Fab Drains

Recycle Reclaim

Fresh
Water

Boilers, Scrubbers, 
Cooling Towers

Evaporation

WWT
Kurt Eckert
“Reducing Water Usage in Semiconductor Manufacturing”
NM Water Conservation Alliance Roundtable
23 March 2000
Rio Rancho,NM
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Reverse Osmosis Reject (ROR)

• too much ROR for evaporation ponds, 
e.g. 0.3-0.4 MGD in these studies

• silica, 65-75 mg/L (100-140 mg/L max)

• Ca, 30-35 mg/L

• Mg, 8-12 mg/L

• TDS, 275-450 mg/L

freshwater

ca. 1 MGD

permeate 
for wafer 

fabrication

RO reject (ROR)

reverse osmosis 
(RO) unit

currently goes to waste;
would prefer to use in “industrial” waters
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freshwater

ca. 1 MGD

permeate 
for wafer 

fabrication

RO reject (ROR)

reverse osmosis 
(RO) unit

currently goes to waste;
would prefer to use in “industrial” waters
cost of freshwater: ca. $2.5/1000gallons

EC 
process

industrial 
waters

concentrate/ 
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Cooling Tower Blowdown (CTB)

COC to Water Use

COC:Cycles of 
Concentration

Gallons per Day 
per Ton of Cooling

1.5 10,200 gpd

2.0 7,000 gpd

4.0 4600 gpd

6.0 4200 gpd

TNT Technology Company (2003)
1st CASS Report,  Appendix M

CTB solutes of interest:

• silica, 40-50 mg/L (100-140 mg/L max)

• Ca, 17-23 mg/L

• Mg, 4-6 mg/L

• phosphate, 15-20 mg/L

• TDS, 620-815 mg/L
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Motivation: The Tucson/AZ Perspective
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Water Demand/Supply in the TAMA
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Approximate Decline in Groundwater Levels 
1940-1995
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Colorado River Basin and River Allocations
Allocation of Colorado River (MAF per year): 

Upper Basin States 7.5

Lower Basin States

California 4.4

Arizona 2.8

Nevada 0.3

Lower Basin Total 7.5

Mexico 1.5

TOTAL 16.5
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Colorado River FlowsColorado River Flows

Estimated past flow averages
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Water Quality and the Colorado River
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Water Quality and 
the Central Arizona 

Salinity Study 
(CASS)

Estimated Annual Salt Balance in 
Phoenix Metropolitan Area

Entering Phoenix 
Metro

Volume 
(ac-ft)

TDS 
(mg/L) Salt (tons)

Groundwater 37,000 680 34,218

SRP 810,000 480 528,768

CAP 752,000 650 664,768

Gila River 90,000 550 67,320

Agua Fria River 50,000 400 27,200

Society 290,000 300 118,320

Agricultural fertilizer 22,500

Total 1,463,094

Exiting Phoenix Metro Volume 
(ac-ft)

TDS 
(mg/L) Salt (tons)

Groundwater 28,000 1,100 41,888

Gila River 100,000 2,370 322,320

Total 364,208

Salt Load 1,098,886

Projected final location of salts 
imported into the Phoenix Metro area

39%

22%
8%

31%

Groundwater Vadose Zone Salt Sinks Other
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Arizona Reservoir Levels in May 2007
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What Limits Water Recovery?
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Augmenting Arizona’s Water Supplies

In-State Options
Increased reuse of reclaimed water
Additional transfers of Colorado River supplies

Out-of-State Options
Interbasin transfer of Columbia River Basin water 
via Colorado River Basin
Water exchange with California – Pacific Ocean 
desalinated water for Colorado River water 
Water exchange with Mexico – Gulf of Mexico 
desalinated water for Colorado River water
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Back to EC….. The Reactions

(+)
Anode Reactions

(−)
Cathode Reactions

Fe(s) → Fe(aq )
2+ + 2e−

Al(s) → Al(aq )
3+ + 3e−

metal
dissolution

2H 2O →O2 + 4H + + 4e−

water
oxidation2OH− →O2 + 2H + + 2e−

O2 + 4H + + 4e− → 2H 2O
2H 2O + 2e− → H 2 + 2OH −

2H + + 2e− → H2

oxygen    
& water
reduction

Precipitation Reactions, e.g.
Fe(aq )

3+ + 3OH− → Fe(OH)3(s)

Al(aq )
3+ + 3OH− → Al(OH)3(s)

+  −

ΔV
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Contaminant Removal Mechanisms

Ferric hydroxide 
precipitates

Fe

O
α-FeOOH (goethite)

γ-FeOOH (lepidocrocite)

Fe(III) & Al(III) Hydroxides form Charged Octahedral Structures

Octahedral structures combine to form amorphous precipitates 
or crystalline solids
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Contaminant Removal Mechanisms

Fe

O

Ferric hydroxides bind and release protons according to the two reactions:
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Examples of oxyanions that are removed via chemical 
adsorption include: orthosilicate, arsenate, etc.

Orthosilicate anion (         ) chemically adsorbed to 
ferric hydroxide binding site.  The chemical 
reaction involves replacing the two OH- ions at 
the top of the structure with 

SiO4
4−

SiO4
4−

Oxyanions that are tetrahedrally
coordinated (e.g.,         ) form bidentate
corner sharing complexes with ferric 
hydroxide octahedra

SiO4
4−

Contaminant Removal Mechanisms

( ) 10 03
4 4 2 3 4 22 2 10 .FeOH H SiO H Fe H SiO H O K+ + −≡ + + ↔ ≡ + =
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Most Oxyanions form Chemical Bonds to Fe(III) and Al(III) 
Hydroxides

H2SiO4
2-

SO4
2-

HPO4
2-

HCO3
-

Others:
chromate, nitrate, arsenate, etc.
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Alkaline Earth (+2) Cations Physically Adsorb to 
Charged  Sites on Fe(III) and Al(III) Hydroxides

Calcium ion physically adsorbed to ferric hydroxide via 
electrostatic attraction to oxygen atoms that carry a partial 

negative charge
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Removal Mechanisms

Physical adsorption - hydrophobic organic solvents, 
microorganisms, polyvalent cations, oils, grease

• ion adsorption is very sensitive to pH (charge on the 
solids)

• hydrophobic organic adsorption is insensitive to pH

Chemical adsorption - oxyanions, natural organic matter 
(humic acids), metal oxides

• pH sensitivity less than for physical adsorption 
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Minteq Modeling
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Silica  removal

• Model: Ferrihydrite triple plane model from Minteq database. 
Specific Surface Area: 750 m2/g; inner capacitance: 1.3 F/m2; 
outer capacitance: 5 F/m2.

• Site density need to be adjusted to fit the experimental data for 
silica and arsenate removal.

Site density: 13 sites/nm2

(initial concentration: 1.8 mM)
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Quantum Chemistry Modeling of Oxyanion Removal: 
Protonation of Binding Sites as a Function of pH
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No other parameters need to be adjusted to fit the experimental data for 
silica and arsenate removal
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Contaminant Removal Experiments:
Parameters to Consider

Operational variables that may affect EC performance are:

• Coagulant dose and type (e.g. Al vs. Fe)

• pH value (5-7-9; CTB 7.5-8.0; ROR 7.8-8.2)

• Post EC clarification or filtration method

• Organic compound concentrations (CTB additives)

• Solution ionic strength

• Hydraulic residence time (rate of dosing)

• Degree of mixing

• Scale of the EC reactor (1 L/min vs. 20 L/min)
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Precipitate Stability Range

Fraction of total Al or Fe that precipitates as a function of pH for total metal 
doses of 0.5, 1, 2 and 3 mM 

• Ideal Al pH range: 5.8 to 7.8
• Ideal Fe pH range: > 4
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Bench Tests: 1 L/min EC Device

-

(a)

- +

(b)

effluent gravity-settled or filtered 
(0.45μm, 0.8μm, 10μm)
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Bench Tests: 1 L/min EC Device
•Working electrode dimensions: 3.178 cm × 34.04 cm

•Space between electrodes: 0.4 cm

•Nominal† electrode thickness: 0.318 cm

•Working volume: 0.35 L

•Applied current: 0.1–0.8 A 

•Volumetric flow rate: 0.35 LPM

•Residence time: 60 sec 

•Number of electrodes/channels:  9/8 

effluent gravity-settled or filtered 
(0.45μm, 0.8μm, 10μm)
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20 L/min Pilot (Intel site @ Ronler Acres,OR)
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20 L/min Pilot (Intel site @ Ronler Acres,OR)

•Working electrode dimensions: 20.3 cm × 50.8 cm
•Space between electrodes: 0.4 cm
•Nominal† electrode thickness: 0.318 cm
•Working volume: 22.7 L
•Applied current: 1.0–16.0 A 
•Volumetric flow rate: 11.35/18.92 LPM
•Residence time: 72 or 120 sec
•Number of electrodes/channels: 73/72 
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Fe electrodes

Al electrodes

anodic current density = (current) / (electrode area) 

Dosing Tests

dose = (dose rate) x (electrode area) x (hydraulic detention time)

• Primary anodic reaction is metal dissolution.
• Negligible O2 evolution.
• Results from these tests indicate that dose can 
be controlled by the current.
• Results can be used to set desired dosing rates 
in pilot and larger units.
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Power consumption (logarithmic) as a function of dosing 
rate (logarithmic) at different Ω for iron electrodes.

Electrode cost (dashed line) and total 
operation cost to treat 1000 gallon of water 
using electrocoagulation as a function of dose 
using aluminum or iron electrodes (energy: 
$0.1/kWh; aluminum: $2.40/kg; iron: $0.80/kg).

Power and Cost per Unit Dose of Coagulant
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• Power requirements are dominated by Ohmic losses in solution.

• Lower power requirement for Fe versus Al at a fixed Ω.
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Fe Dose Response: Pilot vs. Bench

•Agreement between results in bench and pilot units on CTB w/ Fe
•Implication is that scale-up can be based on dose (bench ~60x bigger)
•Ca, Mg removal is but 10 to 30% at economically feasible doses

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 200 400 600 800 1000 1200 1400 1600

Charge Loading (C / L)

Fr
ac

tio
n 

Si
lic

a 
R

em
ov

ed

0 1 2 3 4 5 6 7 8

Faradaic Dose (mM Fe)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 200 400 600 800 1000 1200 1400 1600

Charge Loading (C / L)

Fr
ac

tio
n 

R
em

ov
ed

0 1 2 3 4 5 6 7 8

Faradaic Dose (mM Fe)

Silica removal from CTB

Bench, 

Pilot reactor, 

Clarifier filtered, 

Clarifier unfiltered, 

Ca, Mg removal from CTB

Mg bench, 
Mg pilot, 
Ca pilot, 
Ca pilot, 



39

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 200 400 600 800 1000 1200

Charge Loading (C / L)

 F
ra

ct
io

n 
Si

lic
a 

R
em

ov
ed

0 1 2 3 4 5 6 7 8

Est. Dose (mM Al)

•Fouling of cathodic surfaces encountered
•Aluminosilicates?

Silica removal from CTB and ROR cathode fouling in pilot unit

ROR bench, 
ROR pilot, 
CTB pilot, 
CTB pilot, 

Al Dose Response: Pilot vs. Bench
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Summary

•Oxyanions are cost effectively removed by Al or Fe electrodes; we have examined the 
removal of silica, phosphate and arsenic and obtained >90% removal

•Effective coagulant dose levels are on the order of 1-3 mM for the waters tested

•Hardness cations can be removed by anodically generated iron and aluminum hydroxide 
precipitates, but typically the dose levels required are not economically justified

• Scale-up from bench to pilot EC units can be predicated on Fe-dose for the waters 
studied; severe fouling was encountered w/ Al electrodes

•Currently, we are developing electrochemical methods for hardness ion removal (ELIXR)
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Quantum Chemistry Calculations

• Density functional theory (DFT) calculations performed 
using DMOL3 code from Accelrys.

• Unrestricted GGA calculations using VWN-BP functionals.

• All electron calculations performed with double-numeric 
with polarization (DNP/DMOL3) basis sets.

• Solvation effects incorporated using the COSMO-ibs 
polarized continuum model.
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Compositions of streams (mM)
CTB ROR UA Synthetic

pH 7.5-8.0 7.8-8.2 7-8

Silica 1.42-1.78 2.31-2.67 1.80

Calcium 0.42-0.57 0.75-0.87 0.99

Magnesium 0.16-0.25 0.33-0.49 0.49



44

EC versus Conventional Coagulation
Chemical coagulation uses alum or ferric chloride salts

• Alum typically sold as KAl(SO4)2·12(H2O)

• Ferric chloride typically sold as FeCl3·6(H2O)

Alum and ferric chloride contribute salinity increasing counter-ions

• 8.57 g of undesired solids per g of aluminum in potassium alum

• 1.91 g of undesired solids per g of iron in ferric chloride

• EC adds no undesirable counter-ions
Alum and ferric chloride contain very little coagulant on a per mass basis

• 114 lbs of aluminum per ton of alum

• 413 lbs of iron per ton of ferric chloride

• EC yields one lb of coagulant per lb of electrode
Formation of precipitates from Fe and Al salts decreases pH values

• 2 mM dose of Fe drops pH by 1.5 units

• 2 mM dose of Al drops pH by 3 units

Post coagulation pH adjustments are needed with Al and Fe salts

• Post coagulation pH adjustments are not needed with EC
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