In-Situ and Real-Time Metrology during Cleaning, Rinsing, and Drying of Microand Nano-Structures

Jun Yan*, Kedar Dhane*, Bert Vermeire+, Farhang Shadman*

* Chemical Engineering, University of Arizona + Electrical Engineering, Arizona State University

Objective and Approach

- Investigate the fundamentals of the cleaning, rinsing, and drying of micro- and nano-structures
- Develop a novel metrology method for in-situ and realtime monitoring of the dynamics of impurity transport inside micro- and nano-structures.
- Apply the metrology method together with process modeling to discover operational strategies for lowering resource usage in the cleaning, rinsing, and drying of small structures.

- Rinse progress is monitored by bulk or bath outlet resistivity measurements
- Fundamentals of rinsing patterned wafers are poorly understood
- Key to low-water rinse is on-line metrology; technology not available presently

Novel Hardware: Electro-Chemical Residue Sensor (ECRS)

Clean Chemistry Dependence of Rinse

Sensor shows different rinse dynamics for different chemicals

Parametric Dependence of Rinse

0.42% H₂SO₄, time of chemical exposure: 4min 0.42% H₂SO₄, time of chemical exposure: 4min Magnitude of Impedance $(k\Omega)$ 350 Magnitude of Impedance $(k\Omega)$ 350 Rinse flow= 19.2 gpm 300 49°C 300 250 200 **Rinse flow= 13.8 gpm** 250 150 32°C Surface desorption 200 100 regime 50 T=22°C **Purge regime** 150 1000 600 800 0 200 **400** 0 200 400 **600** Time (sec) Time (sec)

Flow rate effect

Temperature effect

Sensor shows the effects of various process parameters

Parametric Dependence of Rinse

SC2 Rinsing

Initial Concentration Effect

Comprehensive Simulation of Rinse Process

Multi-component species transport equations :

 $\frac{\partial C_{i}}{\partial t} = \nabla \cdot (D_{i} \nabla C_{i} + z_{i} F \mu_{i} C_{i} \nabla \varphi)$

Change in tank concentration :

 $V \frac{\partial C_b}{\partial t} = Q(C_{in} - C_b) + A \cdot Flux$

Surface adsorption and desorption:

$$\frac{\partial C_{S2}}{\partial t} = k_{a2}C_2(S_{02} - C_{S2}) - k_{d2}C_{S2}$$

Poisson equation: $\nabla^2 \varphi = -\frac{\rho}{\varepsilon}$

where charge density: $\rho = F \sum_{i} z_i C_i$

Ohm's law: $\vec{J} = \sigma \vec{E}$ $\nabla \times \vec{E} = 0$

where electrical conductivity:

$$\sigma = \sum_{i} \lambda_{i} C_{i}$$

- Surface Charge
- Diffusion
- Surface reaction
- Ionic transport

- Accurate modeling of the surface cleanup during rinse is possible
- Surface cleanup model can be combined with a tank model to obtain a comprehensive rinse model

<u>Comparison of Experimental Data with</u> <u>Model Prediction: NH4OH</u>

Surface Concentration Profile

- Conventional technology might provide misleading information
- ECRS provides in situ and real-time contamination profile

Rinse Mechanism and Dynamics

2 micron deep trench or via, mild adsorption

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effect of Flow on Rinse Dynamics

width- 500 nm, mild adsorption

Dump Rinse Dynamics

Rinsing Dynamics Enabled by the Model

Temperature effect

The process model associated with the ECRS provides the capability for theoretical parametric study

In-Situ and Real-Time Metrology during Cleaning, Rinsing, and Drying of Microand Nano-Structures

Part -2

Typical Drying Data

- Time required for drying depends on the surface condition.
- ECRS detects complex mechanism for drying, particularly for hydrophilic surfaces.

Mechanism of Drying of Small Structures

Removal rate from adsorbed layer: $d_{d} = d_{s} = a_{g}$

$$k_{a} = k_{aI} + (k_{aII} - k_{aI}) \frac{\theta}{1 + \theta}$$
$$k_{d} = k_{dI} + (k_{dII} - k_{dI}) \frac{\theta}{1 + \theta}$$

Removal rate from bulk liquid: $R_{e} = k(P_{sat}e^{-\frac{\alpha}{w}} - P_{bulk})$

Total removal rate from pore:

 $\boldsymbol{R} = \boldsymbol{R}_e + \boldsymbol{R}_d$

Two simultaneous processes:

- Conventional evaporation of liquid-like molecules (mild feature size effect)
- Adsorption and desorption in a multi-layer (both chemisorbed and physisorbed; strong feature size dependence)

ECRS Calibration for Drying

* Magnitude was collected at optimum frequencies; Phase angle was collected at 100Hz. SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Dynamics of Drying of Nano-Structures

Feature Size Dependence

Dynamics of Drying of Nano-Structures

Feature Size Dependence

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Drying of Nano-Structures

Effect of Purge Gas Purity

ECRS Drying Application

Flow Rate (liter/min)

- Optimum purge is a balance between throughput and resources usage
- ECRS provides in situ and real-time profile of residual moisture
- ECRS helps developing purge recipes (flow rate, purity, and temperature) to enhance the two modes of drying discovered in this study.

Development of Low-Impact Cleaning Determining the Bottlenecks Using ECRS

- Etching creates residues on the sidewalls of the trenches and vias.
- Side wall cleaning becomes more complex, more difficult, and more resource intensive as we move further into manufacturing of high-aspect-ratio nano-features
- No in-situ sensor is available for on-line monitoring of residues; ECRS would result in significant reduction in use of cleaning chemicals.

Cleaning of Micro- and Nano-Structures

ECRS can monitor cleaning of the polymer residue inside trench

Industrial Interactions and Future Plans

- Continue work on application and tech transfer:
 - Joint work, co-sponsored by Freescale (Hsi-An Kwong, Marie Burnham); rinse process
 - Joint work, co-sponsored by Samsung (Seung-Ki Chae, Jeong-Nam Han, Pil-Kwon Jun); cleaning and rinse processes
 - EMC (Doug Goodman); commercialization
- Fundamental work on a novel wireless metrology version of ECRS
- Acknowledge to all the partners and co-workers