

Characterization of Phosphate Electrolytes For Use in Cu ECMP

Kristin G. Shattuck, Jeng-Yu Lin, Alan C. West

Task Number 425.016

Affiliation Department of Chemical Engineering Columbia University acw17@columbia.edu

What is ECMP?

Potential Advantages

- Potentially eliminates need for particles in slurry
- Reduce/eliminate use of strong oxidizers
 - electrons supplied by external circuit oxidize Cu
- Operate at low downforces (<0.3 psi)

Planarization Challenges

- Cu Challenges:
 - Rates
 - Wafer Scale Uniformity
 - Feature-scale planarization
 - Low Aspect Ratios
- Liner materials
 - Ta-based materials (Srini Raghavan)
 - Ru (West)
 - Current year focus

Other SRC Activities

- Copper electrodeposition (SUNY Albany)
 - Material properties of smallest node lines (failure to achieve desired microstructure)
 - Direct metallization (Cu on Ru)

Regular Pretreatment

No pretreatment

Cu: How to Choose an Electrolyte 🎪

• Screening process for ECMP electrolytes

Parameters Examined (using RDE)

- ∎ pH
- Salt concentration
- BTA concentration
- Mass transfer

Key Characteristics

- Metal-removal rates
- Planarization efficiency
- Phosphate based electrolytes
- Benzotriazole (BTA) inhibitors

Method – ECMP Tool

Design features:

- 2D linear motion
- Apply and control low downforces (~1 psi)
- Ease of changing between various electrolytes and pads
- Operate in contact and non-contact modes

Removal Theory

Proposed BTA removal Mechanism

Theory

Quantifying Planarization

• Planarization is most challenging for low-aspect ratios

Can be theoretically characterized as:

Screening Approach

- Electrochemically screen potential ECMP electrolytes
 - Relate removal rate to current density
 - With and without inhibitor (BTA)

For Experiments Using <u>RDE</u>

$$\mathcal{E}_{RDE} = \frac{i_{no} - i_{BTA}}{i_{no}}$$

Results - RDE

pH values 0 to 10 No BTA

*pH 2*0 to 0.01 M BTA

RDE results used to correlate current density to removal rate

Results - RDE

Theoretical Planarization Factor

<u>RDE</u>

- pH 0 & pH 2
 - 0.01 M BTA

Using pH 2 \rightarrow Good planarization is likely at potentials < 0.8 V

Results – ECMP Tool

Experiments using ECMP Tool with Blanket Wafers

pH 2, No BTA

Results

Theoretical Planarization Factor

RDE & ECMP

• pH 2

• 0.001 or 0.01 M BTA

Good planarization likely under conditions:

Potential window ~ 0.4 to 0.8 V

Minimum BTA concentration ~ 0.001 M

Results

Summary Electrolyte Screening

- Operating Conditions
 - pH ~ 2
 - Operating Potential → 0.5 V
 - BTA concentration → from 1 mM
 - Salt Concentration \rightarrow 1 M
- Patterned structures tested to support screening process

Planarization Results

- All planarization experiments were performed at:
 - 0.5 V vs. Ag/AgCl
 - Downforce ~ 1 psi

Planarization Results

0.001 M BTA

Pad Type: Suba

390 nm of Material Removed

- Step Height Reduction
 - ~ 780 nm

Pad Type: IC1000

340 nm of Material Removed

- Step Height Reduction
 - ~ 740 nm

Planarization Results

✓ Low aspect ratio polishing achieved

Pad Type: D100

320 nm of Material Removed

Step Height Reduction

~ 400 nm

Cu ECMP: Future Work

- Improved test structures
 - Feature size
 - Pattern effects
 - Roughening studies
- Alternative pads
- Other E-CMP Tools with better mechanics

Ru ECMP

- Phosphate based electrolytes
- Influence of BTA
- Apparent Selectivity

- What can be learned from electrodeposition?
 - Oxide can be easily reduced

Other Relevant Studies

 Microfluidic Device originally developed to study adsorption/desorption kinetics of additives in plating

 Evaluation of Post-Cu CMP Cleaning of Organic Residues Using Microfluidic Device

Conclusions

✓ Electrolyte screening process was successful

✓ Planarization was observed using phosphate based electrolyte

• Industrial partner needed for further testing

Acknowledgments

- SRC/Sematech
- Columbia University
- Neha Solanki

- Novellus
- Cabot
- Rohm & Haas