### ESH and ITRS Impact on Semiconductor Technology Development

May 15, 2008 ERC Tele-seminar

#### Laurie S. Beu, P.E., Consultant to ISMI

Laurie.Beu@ismi.sematech.org

Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing Initiative, and ISMI are servicemarks of SEMATECH, Inc. SEMATECH, and the SEMATECH logo are registered servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

#### INTERNATIONAL SEMATECH



## Acknowledgments

- Jim Jewett Intel ESH TWG Chair
- Walter Worth ISMI ESH TWG Co-chair
- Members of the ESH TWG



### Impacts of ESH Issues on the Industry

- In the past, ESH issues have negatively impacted semiconductor manufacturers -Ethylene glycol ethers, CFCs, PFCs, PFOS
  - Chemical exposure concerns (and lawsuits)
  - Environmental clean ups (Superfund Sites)
  - Use restriction regulations

Designing for Sustainability allows for early identification of potential ESH issues – Resolve issues before process transfer to high volume manufacturing



## What is Sustainable Development?

"Development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

Source: Brundtland Commission, 1987



## Why Sustainability Now?

- Semiconductor industry is international.
  - Sites in many regions of the world.
  - Customers in many regions of the world.
- Increased environmental awareness resulting in increased focus on corporate sustainability & responsibility.
  - Company-driven
  - NGOs
  - Shareholders
- While U.S. environmental regulations have changed little in recent years, same is not true of other regions.
- Technologists must ensure products and processes they develop are sustainable.



### EU Sustainable Development Strategy Priority Challenges

- Climate change and clean energy.
- Sustainable transport.
- Sustainable production and consumption.
- Public health threats.
- Better management of natural resources.
- Social inclusion, demography, and migration.
- Fighting global poverty.



## **2007 ESH TWG Participants**

- James Beasley ISMI
- Laurie Beu Laurie S. Beu Consulting
- Aimee Bordeaux SEMI
- Reed Content AMD
- Tom Diamond IBM
- Hans Peter Bipp Infineon\*
- John Harland Intel
- Shane Harte ESIA
- David Harman Intel
- Bob Helms University of Texas
- Stan Hughes Applied Materials
- Shigehito Ibuka TEL
- Francesca Illuzi ST Microelectronics\*
- Jim Jewett Intel\*
- Bruce Klafter Applied Materials
- Joey Lu TSIA\*

- Joseph K.C. Mau Powerchip Semiconductor
- Ed McCarthy Freescale Semiconductor
- Laura Mendicino Freescale Semiconductor
- Mike Mocella DuPont
- Phil Naughton ISMI
- Takayuki Ohgoshi NEC Electronics\*
- Brian Raley AMD
- Farhang Shadman U of AZ
- Mike Sherman FSI International
- Jeffrey Sczechowski ST Microelectronics
- Harry Thewissen NXP Semiconductors
- Tetsu Tomine Seiko-Epson\*
- Tim Wooldridge SRC
- Walter Worth Sematech\*
- Munetsugu Yamanaka TEL
- Tim Yeakley Texas Instruments

\* = ITWG Members





## **ESH Key Themes for 2007**

- Focus on critical chemistry/materials needs
- Improvement of energy efficiency
- "ECO" design of factories and products



### Underlying Strategies Built into 2007 ESH Chapter

- Understand (characterize) processes and materials to create a development baseline
- Use materials that are less hazardous or whose byproducts are less hazardous
- Design products and systems (equipment and facilities) that consume less raw material and resources
- Ensure factories are safe for employees (300mm to 450mm transition)



## **Reorganized Tables**

- Chemical/Materials Tables focus on chemical selection
- Process Tables focus on process and tool design
- Facilities Tables (new) focus on support systems and fab level design
- Design for Sustainability & Product Stewardship Table focuses on metrics and sustainable product design and manufacture



# Difficult Challenges – Chemicals & Materials Management

| 7                                         | Table ESH1a ESH Difficu                                                                                                                                             | Evaluation and refinement of                                               |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Difficult Challenges $\geq 22 \text{ nm}$ | Summary of Issues                                                                                                                                                   | quality, rapid assessment                                                  |  |  |  |  |
|                                           | Chemical Assess<br>Evaluet<br>nanomaterials can be utilized<br>environment without delayin<br>Regional differences in regulation                                    | methodologies to ensure that new materials such as nanomaterials           |  |  |  |  |
| Chemicals and materials management        | and full commercialization<br>Trend towards lowering exposur<br>Chemical Data Availability<br>Inability to forecast/anticipate fu                                   | while protecting human health,                                             |  |  |  |  |
|                                           | Lack of comprehensive ESH data for new, proprietary chemicals and materials to respond to the increasing external and regional requirements on the use of chemicals |                                                                            |  |  |  |  |
|                                           | Chemical Exposure Management<br>Lack of information on how the                                                                                                      | t chemicals and materials are used and what process by-products are formed |  |  |  |  |
|                                           | Method to obtain information on how the chemicals and materials are used and what process by-products<br>are formed                                                 |                                                                            |  |  |  |  |



## Difficult Challenges – Chemicals & Materials Management

| Difficult Challenges $\geq 22$ nm  | Summary of Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                    | Chemical Assessment      Evaluation and refinement of quality, rapid assessment methodologies to ensure that new materials such as nanomaterials can be utilizenvironment without dela      Lack of comprehensive ESH                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Chemicals and materials management | Regional differences in regula and full commercializatio    data for new, proprietary    ring,      Trend towards lowering exposion    chemicals and materials to    respond to the increasing      Chemical Data Availability    Inability to forecast/anticipate    cexternal and regional    respond to the increasing      Lack of external and regional    external and regional    requirements on the use of    respond      Chemical Exposure Managem    Lack of information on how the chemicals and materials are used and what process by-products    ormed |  |  |  |  |  |

Table ESH1a ESH Difficult Challenges—Near-term



# Difficult Challenges – Process & Equipment Management

|                                  | Process Chemical Optimization                                            |                                                                    |   |
|----------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|---|
|                                  |                                                                          | cesses that meet technology demands while reducing impact on human |   |
|                                  | health, stfety and the environme<br>chemical quarter requirements        |                                                                    |   |
|                                  | Environment Mana<br>Capability for compone                               | processes that meet technology                                     |   |
|                                  | Need to understand ESH ch<br>mitigation                                  | demands while reducing impact                                      |   |
|                                  | Need to develop effective manager                                        | on human health, safety, and                                       |   |
|                                  | residues from the manufacturing                                          | the environment, both by using                                     |   |
|                                  | Global Warming Emissions Reduction<br>Need to reduce emissions from proc | more benign materials and by                                       | _ |
|                                  | Water and Energy Conservation                                            | reducing chemical quantity                                         | _ |
|                                  | Need for innovative energy- and wa                                       | requirements through more                                          |   |
| Process and equipment management | Consumables Optimization                                                 | · · · · · · · · · · · · · · · · · · ·                              |   |
|                                  | Need for more efficient utilization o                                    | efficient and cost-effective                                       |   |
|                                  | Byproducts Management                                                    |                                                                    |   |
|                                  | Development of improved metrolog                                         | process management                                                 |   |



# Difficult Challenges – Process & Equipment Management

| Need to develop equipment and processes that meet technology demands while reducing impact on human health, safety and the environment, both through the use of more benign materials, and by reducing |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| chemical quantity requirements through more efficient and cost-effective process management                                                                                                            |  |  |  |  |  |
| Environment Management                                                                                                                                                                                 |  |  |  |  |  |
| Capability for component isolation in waste streams                                                                                                                                                    |  |  |  |  |  |
| Need to understand ESH characteristics of process emissions and by-products to identify the appropriate<br>mitigation                                                                                  |  |  |  |  |  |
| Need to develop effective management systems to address issues related to hazardous and non-hazardous residues from the manufacturing processes                                                        |  |  |  |  |  |
| Global Warming Emissions Reduction                                                                                                                                                                     |  |  |  |  |  |
| Need to reduce emissions from processes using high GWP chemicals                                                                                                                                       |  |  |  |  |  |
| Water and Energy Conservation                                                                                                                                                                          |  |  |  |  |  |
| Need for innovative energy- and water-efficient processes and equipment                                                                                                                                |  |  |  |  |  |
| Con Optimization                                                                                                                                                                                       |  |  |  |  |  |
| of chemicals and materials, and increased reuse and recycling                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                        |  |  |  |  |  |

Need for innovative energy- and water-efficient processes and equipment

gy for byproduct speciation.



# Difficult Challenges – Facilities technology requirements and Sustainability and product stewardship

|                                        | Need to reduce use of energy,<br>water, and other utilities.                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Facilities technology requirements     | Conservation    Need for more efficient thermal      Need to reduce use of    management of cleanrooms and      Global Warming Emis    facilities systems      Need to reduce total CO2 equivalent emissions                                                                                                                                                                                       |
| Sustainability and product stewardship | Sustainability Metrics      Need to identify the elements for defining and measuring the sustainability of a technology generation      Design for ESH      Need to make ESH a design parameter at the design stage of new equipment, processes and products      End-of-Life Disposal/Reclaim      Need to design facilities, equipment and products to facilitate re-use/disposal at end of life |



# Difficult Challenges – Facilities technology requirements and Sustainability and product stewardship

| Facilities technology requirements<br>Sustainability and product stewardship | Conservation                                                                    |                                                       |    |  |  |  |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
|                                                                              | Need to reduce use of energy, water and other utilities                         |                                                       |    |  |  |  |  |
|                                                                              | Need for more efficient thermal management of cleanrooms and facilities systems |                                                       |    |  |  |  |  |
|                                                                              | Global Warming Emissions Reduction                                              |                                                       |    |  |  |  |  |
|                                                                              | Need to design energy efficient manuf                                           | Need to identify the                                  |    |  |  |  |  |
|                                                                              | Need to reduce total CO <sub>2</sub> equivalent er                              | elements for defining and                             |    |  |  |  |  |
|                                                                              | Sustainability Matrice                                                          |                                                       |    |  |  |  |  |
|                                                                              | Need to identify the elements for defin                                         |                                                       | on |  |  |  |  |
| Sustainability and product stawardship                                       | Design for ESH                                                                  | sustainability of a                                   |    |  |  |  |  |
| Sustainability and product stewardship                                       | Need to make FSH a design para-                                                 |                                                       | ts |  |  |  |  |
|                                                                              |                                                                                 | technology generation                                 |    |  |  |  |  |
|                                                                              | Need to design facilities, equipment and                                        | products to facilitate re-use/disposal at end of life |    |  |  |  |  |



# Difficult Challenges – Facilities technology requirements and Sustainability and product stewardship

|                                                     | Conservation                                                                    |                           |  |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|
|                                                     | Need to reduce use of energy, water and other utilities                         |                           |  |  |  |  |  |
|                                                     | Need for more efficient thermal management of cleanrooms and facilities systems |                           |  |  |  |  |  |
| Facilities technology requirements                  | Global Warming Emissions Reduction                                              |                           |  |  |  |  |  |
|                                                     | Need to design energy efficient manufactu                                       | uring facilities          |  |  |  |  |  |
|                                                     | Need to reduce total CO <sub>2</sub> equivalent emiss                           |                           |  |  |  |  |  |
|                                                     | Sustainability Metrics                                                          | Need to make ESH a design |  |  |  |  |  |
|                                                     | Need to identify the elements for defining                                      |                           |  |  |  |  |  |
| Sector different and the sector different different | Design for ESH                                                                  | •                         |  |  |  |  |  |
| Sustainability and product stewardship              | Need to man                                                                     | stage of new equipment,   |  |  |  |  |  |
|                                                     | End-of-Life Disposal/Reclaim                                                    | processes, and products   |  |  |  |  |  |
|                                                     | Need to design facilities, equipment and p                                      | processes, and products   |  |  |  |  |  |



## **ESH Intrinsic Requirements**

Table ESH2a ESH Intrinsic Requirements—Near-term Years

| Year of Production                                                                    | 2007          | 2008                                         | 2009      | 2010                                   | 2011      | 2012      | 2013         | 2014                | 2015        |
|---------------------------------------------------------------------------------------|---------------|----------------------------------------------|-----------|----------------------------------------|-----------|-----------|--------------|---------------------|-------------|
| I. Chemicals and Materials Management Te                                              | chnology Requ | lirements                                    | •         |                                        |           |           |              |                     | •           |
| Chemical risk assessments (environmental,<br>health and safety) defined and completed | 10            | 0%                                           | 10        | 100% 100%                              |           |           |              |                     |             |
| ESH risk assessment techniques for nano-<br>materials and nano-particles              |               | ssessment<br>dology.                         |           | Implement risk assessment methodology. |           |           |              |                     |             |
| II. Process and Equipment Technology Requ                                             | irements      |                                              |           |                                        |           |           |              |                     |             |
| Energy Consumption                                                                    |               |                                              |           |                                        |           |           |              |                     |             |
| Total fab tools (kWh/cm <sup>2</sup> ) [2]                                            |               | 0.40-0.35                                    |           |                                        | 0.35-0.30 | )         |              | 0.30-0.25           |             |
| Tool energy usage (% of 2005 baseline)                                                |               | 90                                           |           |                                        | 80        |           | Functio      | onal Area Goals TBD |             |
| Tool total equivalent energy* (% of 2007 baseline)                                    | 1             | 00                                           | 80        | 70                                     |           |           |              |                     |             |
| Water Consumption (driven by sustainable g                                            | rowth and cos | t)                                           | •         |                                        |           |           |              |                     |             |
| Surface preparation UPW use (% of 2005 baseline)                                      | 90            |                                              |           | 80                                     |           | 75        |              |                     |             |
| Tool UPW usage (% of 2005 baseline)                                                   |               | 90                                           |           |                                        | 80        | 80        |              |                     |             |
| Chemical Consumption and Waste Reduction                                              | (driven by en | vironmental s                                | tewardshi | p and cos                              | :t)       |           |              |                     |             |
| Improvement in process chemical<br>utilization (% of 2005 baseline)                   |               | 90                                           |           |                                        | 80        |           |              | 75                  |             |
| Reduce PFC emission                                                                   | baseline b    | ute reduction<br>y 2010 as ag<br>niconductor | reed to b | y the                                  | Maintain  | 10% absol | ute reductio | on from 199         | 5 baselin   |
| Liquid and solid waste reduction (% of 2007 baseline)                                 | 1             | 00                                           | 90        |                                        |           |           | 75           |                     |             |
| Manufacturable solutions exist, and are                                               | being optimi  | zed                                          |           |                                        |           |           |              |                     | IONAL SEMAT |
| Manufacturable solu                                                                   | tions are kno | own                                          |           |                                        |           |           |              |                     |             |
| Interim solu                                                                          | tions are kno | own 🔶                                        |           |                                        |           |           |              | MANUFACTU           |             |
| Manufacturable solutions                                                              | are NOT kno   | own                                          |           |                                        |           |           |              | MANOFACTO           |             |
| -                                                                                     |               | -                                            |           |                                        |           |           |              |                     |             |

## **ESH Intrinsic Requirements**

| Worker and Workplace Protection                                                                                           |                              |               |          |                              |                    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|----------|------------------------------|--------------------|--|--|--|
| Safety screening methodologies for new<br>technologies (e.g., 450mm, EUV<br>lithography, ERM)                             | Develop methodologies.       |               |          | Implement methodologies.     |                    |  |  |  |
| III. Facilities Technology Requirements                                                                                   |                              |               |          |                              |                    |  |  |  |
| Energy Consumption                                                                                                        |                              |               |          |                              |                    |  |  |  |
| Total fab energy usage (kWh/cm <sup>2</sup> )                                                                             |                              | 1.5-1.3       |          | 1.3-1.1                      | 1.1-1.0            |  |  |  |
| Total fab support systems energy usage (kWh/cm <sup>2</sup> ) [2]                                                         | 0.8–0.6                      |               |          | 0.6–0.5                      | 0.5-0.4            |  |  |  |
| Reduce total fab energy usage (% of 2007 baseline)                                                                        | 1                            | 100 90        |          | 80                           | 70                 |  |  |  |
| Water Consumption                                                                                                         |                              |               |          |                              |                    |  |  |  |
| Net feed water use (liters/cm <sup>2</sup> ) [2]                                                                          | 15                           | 15 15-12      |          | 12-10                        | 10-8               |  |  |  |
| Fab UPW use (liters/cm <sup>2</sup> ) [2]                                                                                 | 8                            | 8-7           | ,        | 7-6                          | 6-4                |  |  |  |
| Chemical Consumption and Waste Reduction                                                                                  | 1                            |               | I        |                              |                    |  |  |  |
| Reduce hazardous liquid waste by<br>recycle/reuse** (% of 2007 baseline)                                                  | 1                            | 00            | 90       | 80                           | 75                 |  |  |  |
| Reduce solid waste by recycle/reuse** (% of 2007 baseline)                                                                | 1                            | 00            | 90       | 80                           | 75                 |  |  |  |
| IV. Sustainability and Product Stewardship R                                                                              | equirements                  |               |          |                              |                    |  |  |  |
| Define environmental footprint metrics for<br>process, equipment, facilities, and products;<br>reduce from baseline year. | Define metrics and baseline. |               | seline.  | 90% of baseline 80% of basel |                    |  |  |  |
| Integrate ESH priorities into the design<br>process for new processes, equipment,<br>facilities, and products.            | Define me                    | etrics and ba | iseline. |                              | INTERNATIONAL SEMA |  |  |  |
| Facilitate end-of-life disposal/reclaim                                                                                   | Define me                    | etrics and ba | seline.  |                              |                    |  |  |  |

MANUFACTURING INITIATIVE

## **Technology Requirements Tables**

- Tables for "Chemicals" and "Processes and Equipment" provide requirements for technology thrusts
  - Interconnect
  - Front End Processing
  - Lithography
  - Assembly & Packaging
  - Emerging Research Materials
- Other tables focus on "Facilities" and "Sustainability"



Table ESH3a Chemicals and Materials Management Technology Requirements—Near-term Years

The Environment, Safety, and Health new chemical screening tool (Chemical Restrictions Table) is linked online

|                                                                            | 1                                                                                               |                                                                                  |                                                  |                                                                                                                                     |      |                                                                                    | 1         | 1          | 1                                                                                  |       |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------|-----------|------------|------------------------------------------------------------------------------------|-------|--|--|
| Year of Production                                                         | 2007                                                                                            |                                                                                  | 2008                                             | 2009                                                                                                                                | 2010 | 2011                                                                               | 2012      | 2013       | 2014                                                                               | 2015  |  |  |
| Interconnect                                                               |                                                                                                 |                                                                                  |                                                  |                                                                                                                                     |      | _                                                                                  |           |            |                                                                                    |       |  |  |
| Surface preparation                                                        | Alternative<br>improved E<br>impacts. M<br>improve cl<br>utilization<br>characteri<br>emissions | ESH<br>laintain or<br>pemical<br>Chara                                           | improved<br>impacts. N                           | Alternatives with<br>improved ESH<br>impacts. Maintain Alternatives with improved<br>ESH impacts. Maintain or<br>hemical<br>by 10%. |      |                                                                                    |           |            | Maintain or ESH impacts. Maintain improve chemical                                 |       |  |  |
| Front End Processes                                                        |                                                                                                 | emissi                                                                           | ions; e                                          | establ                                                                                                                              | ish  |                                                                                    |           | •          |                                                                                    |       |  |  |
| High-κ and metal gate materials                                            | Conduct E<br>Maintain o<br>minimize                                                             |                                                                                  |                                                  |                                                                                                                                     |      | r improv<br>itilizatior<br>ninimize                                                |           | chemica    | or improv<br>I utilization<br>I minimize<br>cts                                    | ı* by |  |  |
| Doping (implantation and diffusion)                                        | Lo                                                                                              | w hz                                                                             | ant materia                                      | ls                                                                                                                                  |      | Low                                                                                | hazard do | opant mate | rials                                                                              |       |  |  |
| Conventional surface preparation<br>(stripping, cleaning, rinsing, drying) | Character<br>emissions<br>baseline.                                                             |                                                                                  | Maintain or<br>improve chemical<br>usage by 10%. |                                                                                                                                     |      | Maintain or improve chemical usage by 10%.                                         |           |            | Maintain or improve chemical usage by 10%.                                         |       |  |  |
| Alternative surface preparation methods                                    |                                                                                                 | entify novel wafer cleaning materials.<br>nduct ESH risk assessment of materials |                                                  |                                                                                                                                     |      | Maintain or improve<br>chemical usage by 10%<br>and minimize process<br>byproducts |           |            | Maintain or improve<br>chemical usage by 10%<br>and minimize process<br>byproducts |       |  |  |

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known

Manufacturable solutions are known

Interim solutions are known



INTERNATIONAL SEMATECH



Manufacturable solutions are NOT known

Table ESH3a Chemicals and Materials Management Technology Requirements—Near-term Years

The Environment, Safety, and Health new chemical screening tool (Chemical Restrictions Table) is linked online

| Year of Production                                                         | 2007                                                                                                                         | 2008                                                                          | 2009 | 2010    | 2011                            | 2012                                                                                | 2013                      | 2014                                                                               | 2015                      |  |                                                                                         |  |       |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------|---------|---------------------------------|-------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------|---------------------------|--|-----------------------------------------------------------------------------------------|--|-------|
| Interconnect                                                               |                                                                                                                              | ł                                                                             |      |         |                                 |                                                                                     |                           |                                                                                    |                           |  |                                                                                         |  |       |
| Surface preparation                                                        | Alternatives with<br>improved ESH<br>impacts. Maintain or<br>improve chemical<br>utilization*;<br>characterize<br>emissions. | H Alternatives with<br>improved ESH Alternative<br>impacts. Maintain ESH impa |      |         |                                 | Alternatives with improved<br>ESH impacts. Maintain or<br>improve chemical<br>(10%. |                           |                                                                                    | nproved<br>ntain or       |  |                                                                                         |  |       |
| Front End Processes                                                        |                                                                                                                              |                                                                               |      |         |                                 |                                                                                     | •                         |                                                                                    |                           |  |                                                                                         |  |       |
| High-κ and metal gate materials                                            | Maintain or i Con                                                                                                            |                                                                               |      |         |                                 |                                                                                     | Maintain or i Conduct ESH |                                                                                    | nprov<br>zatior<br>iimize |  | Maintain or improve<br>chemical utilization* by<br>10% and minimize proce<br>byproducts |  | n* by |
| Doping (implantation and diffusion)                                        | LOW                                                                                                                          |                                                                               |      |         | Low                             | Low hazard dopant materials                                                         |                           |                                                                                    |                           |  |                                                                                         |  |       |
| Conventional surface preparation<br>(stripping, cleaning, rinsing, drying) | Characterize mate<br>emissions; e<br>baseline.                                                                               |                                                                               | 10%. | chemica | mprov<br><del>r usa</del> ge by |                                                                                     |                           | i or improv<br>I usage by                                                          |                           |  |                                                                                         |  |       |
| Alternative surface preparation<br>methods                                 |                                                                                                                              | n wafer cleaning materials.<br>H risk assessment of materials                 |      |         |                                 |                                                                                     |                           | Maintain or improve<br>chemical usage by 10%<br>and minimize process<br>byproducts |                           |  |                                                                                         |  |       |

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known





Table ESH3a Chemicals and Materials Management Technology Requirements—Near-term Years

The Environment, Safety, and Health new chemical screening tool (Chemical Restrictions Table) is linked online

| Var of Dualitation                                                         | 2007                                                                                                                         | 2000                                                                                                                    | 2000                 | 2010                                      | 2011 | 2012                     | 2012                                             | 2014 | 2015 |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|------|--------------------------|--------------------------------------------------|------|------|--|
| Year of Production                                                         | 2007                                                                                                                         | 2008                                                                                                                    | 2009                 | 2010                                      | 2011 | 2012                     | 2013                                             | 2014 | 2015 |  |
| Interconnect                                                               |                                                                                                                              |                                                                                                                         |                      |                                           | _    |                          |                                                  |      |      |  |
| Surface preparation                                                        | Alternatives with<br>improved ESH<br>impacts. Maintain or<br>improve chemical<br>utilization*;<br>characterize<br>emissions. | Alternative<br>improved<br>impacts. I<br>or improve<br>chemical<br>utilization                                          | ESH<br>Maintain<br>e | ESH impacts. Maintain or improve chemical |      |                          | Maintain or ESH impacts. M<br>cal improve chemic |      |      |  |
| Front End Processes                                                        |                                                                                                                              |                                                                                                                         |                      |                                           |      |                          |                                                  |      |      |  |
| High-κ and metal gate materials                                            | Conduct ESH risk asses<br>Maintain or improve che<br>minimize process bypro                                                  | Maintain or improve<br>chemical utilization* by<br>10% and minimize process<br>byproducts                               |                      |                                           |      | l utilizatior            | n* by                                            |      |      |  |
| Doping (implantation and diffusion)                                        | Low hazard dop                                                                                                               | ant materia                                                                                                             | lls                  | L <sup>c</sup> Maintain or improve        |      |                          |                                                  |      | Ve   |  |
| Conventional surface preparation<br>(stripping, cleaning, rinsing, drying) | Characterize<br>emissions; establish<br>baseline.                                                                            | emissions; establish improve cher                                                                                       |                      | Maintain or improchemical and wa          |      |                          |                                                  |      | ter  |  |
| Alternative surface preparation methods                                    | Identify novel wafer clea<br>Conduct ESH risk asses                                                                          | Maintain process<br>chemical usage by 10%<br>and minimize process<br>byproducts cnemical usage<br>byproducts byproducts |                      |                                           |      | i usage by<br>imize proc | 10%                                              |      |      |  |

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known





| Year of Production                   | 2007                                                                                             | 2008                                                          | 2009       | 2010                                                                                                                                              | 2011                                                                | 2012                                                    | 2013                                                    | 2014                                                    | 2015       |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------|--|
| Lithography                          | <u>.                                    </u>                                                     |                                                               | <u> </u>   |                                                                                                                                                   | 1                                                                   |                                                         |                                                         | 1                                                       |            |  |
| 193 nm immersion resists             | Conduct ESH risk assessment of materials.                                                        |                                                               |            | Maintain or improve<br>chemical utilization* by<br>10%.                                                                                           |                                                                     | Maintain or improve<br>chemical utilization* by<br>10%. |                                                         |                                                         |            |  |
| 193 nm immersion fluids              | Conduct ESH risk Maintain or<br>assessment of improve chemical<br>materials. utilization by 10%. |                                                               |            | Maintain or improve<br>chemical utilization* by<br>10%.                                                                                           |                                                                     |                                                         | Maintain or improve<br>chemical utilization* by<br>10%. |                                                         |            |  |
| EUV resists                          | Conduct ESH risk assessment of materials.                                                        |                                                               |            |                                                                                                                                                   | Maintain or improve<br>chemical utilization* by<br>10%.             |                                                         |                                                         | Maintain or improve<br>chemical utilization* by<br>10%. |            |  |
| Imprint                              | Conduct ESH risk assessment of materials.                                                        |                                                               |            | Conduct ESH risk<br>assessment of materials.                                                                                                      |                                                                     | Maintain or improve<br>chemical utilization* by<br>10%. |                                                         |                                                         |            |  |
| PFOS/PFAS** chemicals                | PFOS/PFAS                                                                                        | ed / implemented                                              |            |                                                                                                                                                   | Non-PFAS materials<br>developed for critical uses<br>in lithography |                                                         |                                                         |                                                         |            |  |
| Mask making and cleaning             | Characterize<br>emissions; establish<br>baseline.                                                | emissions; establish chemical utilization Maintain or improve |            | Alternatives with improved<br>ESH impacts (PFOS-free).<br>Maintain or improve<br>chemical utilization* by<br>10%; minimize process<br>byproducts. |                                                                     |                                                         |                                                         |                                                         |            |  |
| Emerging Research Materials          |                                                                                                  |                                                               |            |                                                                                                                                                   |                                                                     |                                                         |                                                         |                                                         |            |  |
| Nanomaterials                        | Conduct ESH risk asses                                                                           | Conduct ESH risk assessment of materials.                     |            |                                                                                                                                                   |                                                                     |                                                         | s.                                                      |                                                         |            |  |
| Biological materials and their waste | Conduct ESH risk asses                                                                           | Conduct ESH risk assessment of materials.                     |            |                                                                                                                                                   |                                                                     |                                                         |                                                         |                                                         |            |  |
| Materials for novel logic and memory | Conduct ESH risk asses                                                                           | sment of n                                                    | naterials. | C                                                                                                                                                 | Conduct E                                                           | SH risk as                                              | sessment                                                |                                                         | NAL SEMATE |  |



### **Chemical Restrictions Screen**

| Issues &<br>Characterization                                                                                     | Show Stopper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | High Restriction Potential                                                                                                                                                 | Medium Restriction<br>Potential                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List of chemicals<br>or raw materials<br>subject to actual or<br>potential<br>manufacture or<br>use restrictions | Asbestos materials<br>Certain glycol ethers<br>Polychlorinated biphenyls<br>Fully halogenated<br>chlorofluorocarbons (CFCs)<br>Carbon tetrachloride<br>1,1,1 trichloroethane<br>Halons 1211, 1301, 2402<br>Hydrobromofluorocarbons<br>(HBFCs)<br>HCFC 141b<br>Polybrominated biphenyls<br>(PBBs) and their ethers/oxides<br>(PBDEs)<br>Cadmium compounds<br>Lead compounds<br>Lead compounds<br>Mercury compounds<br>Hexavalent Chromium<br>compounds<br>Polychlorinated biphenyls<br>(PCB)/ terphenyls (PCT)<br>Polychlorinated naphthalene<br>(PCN)<br>Short chain chlorinated<br>paraffins (C10-13, Cl >50%)<br>Tributyl tin (TBT) and, triphenyl<br>tin (TPT) compounds<br>Certain azo colorants | Hydrochlorofluorocarbons<br>(HCFCs)<br>Perfluorooctyl sulfonates<br>(PFOS)<br>Cadmium compounds<br>Lead compounds<br>Mercury compounds<br>Hexavalent chromium<br>compounds | Perfluorocompounds (PFCs)<br>- SF6 - C4F10<br>- C2F6 - C5F12<br>- CF4 - C6F14<br>- NF3<br>- C4F8<br>- CHF3<br>- C3F8<br>Hydrofluorocarbons (HFCs)<br>Perfluorooctanoic acid (PFOA)<br>and its salts<br>Certain phthalates<br>Phenols<br>Perfluoroalkyl sulfonates<br>(PFAS)<br>Ethylene oxide<br>Ethylene chloride |



MANUFACTURING INITIATIVE

### **Process and Equipment Technology Requirements**

Table ESH4a Process and Equipment Management Technology Requirements—Near-term Years

\* The Environment, Safety, and Health new chemical screening tool (Chemical Restrictions Table) is linked online

| Year of Production                                 | 2007                                                                                    | 2008             | 2009                                                                                      | 2010                                      | 2011           | 2012                                             | 2013                                                                                 | 2014       | 2015                    |
|----------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------------------------------------------|------------|-------------------------|
| Interconnect                                       |                                                                                         |                  |                                                                                           |                                           |                |                                                  |                                                                                      |            |                         |
| Surface preparation                                | Establish<br>baseline for<br>chemical and<br>water usage.;<br>characterize<br>emissions |                  |                                                                                           | hemicals and water usage from<br>baseline |                |                                                  | Additional 2% reduction in<br>chemicals and water usage<br>per year; recycle/reclaim |            |                         |
| Front End Processes                                | E                                                                                       | nergy            | officia                                                                                   | nt cla                                    | ane            |                                                  |                                                                                      |            |                         |
| Surface preparation (stripping, cleaning, rinsing) | ESH-Inenaly wa                                                                          | rocess           |                                                                                           |                                           | i i i          | clean and rir<br>anufacturing                    |                                                                                      | ses and to | ols                     |
|                                                    | ernissions,                                                                             | xhaust<br>ptimiz |                                                                                           | · · · · · · · · · · · · · · · · · · ·     |                | e chemical<br>n* by 10%                          |                                                                                      |            | e chemical<br>n* by 10% |
|                                                    | Energy efficient cle<br>exhaust flow rate                                               |                  |                                                                                           | Energy e                                  | efficient clea | an processe<br>optimized                         | s (optimize<br>d heaters)                                                            | ed exhaust | flow rates,             |
| Alternative surface preparation methods            | Identify novel wafer<br>and equipment. Ch<br>establish water and<br>baselines. Conduct  | nissions;<br>age | Novel wafer cleaning<br>technologies evaluated and<br>optimized to minimize ESH<br>impact |                                           |                | Novel wafer cleaning<br>technologies implemented |                                                                                      |            |                         |

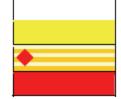
Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known





### Process and Equipment Technology Requirements

Table ESH4a Process and Equipm Develop eco-design criteria,


\* The Environment, Safety, and Health new chemical scre

| * The Environment, Safety, and Hea                 | <sup>ilth new chemical scree</sup> establish m                                                                                                                                               | etrics and targets for                                                                     |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Year of Production                                 | 2007                                                                                                                                                                                         | 2014 2015                                                                                  |
| New Equipment Design                               | minimized e                                                                                                                                                                                  | environmental                                                                              |
| Eco-design                                         | Develop en footprint an metros and ta environmental footprint and impact.                                                                                                                    | d impact.                                                                                  |
| Design for Maintenance                             | Develop safe maintenance criteria.                                                                                                                                                           | Design equipment so that commonly serviced components and                                  |
| Energy Consumption (kWh per<br>cm2) [1]            | Characterize energy requirements for<br>process and ancillary equipment.                                                                                                                     | Characterize water and<br>utilities requirements for                                       |
| Water and other utilities (liters or m3 / em2) [1] | Characterize water and utilities<br>requirements for process<br>consumption. Determine leas,<br>water recycle/reclaim; reduce water and<br>utilities requirements 15% per technology<br>node | process. Optimize<br>consumption. Determine<br>feasibility for water                       |
| Chemicals (gms/cm2) [1]                            | Conduct ESH risk assessment of<br>processes and equipment.                                                                                                                                   | recycle/reclaim; reduce water and utilities                                                |
| Consumables**                                      | Establish consumables baseline.                                                                                                                                                              | requirements 15% per                                                                       |
| Equipment thermal management                       | Establish baseline                                                                                                                                                                           | F technology node.<br>equipment to cleanroom air by<br>15% from baseline by additional 15% |

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known

Interim solutions are known

Manufacturable solutions are NOT known



INTERNATIONAL SEMATECH

rm Years

### Facilities, Energy & Water Technology Requirements Develop facilities to minimize

| Year of Production                                                 | 2007                  | 2008 envi                                                  | ronmental footprint                                                                                    | 2014                | 2015                                |              |  |  |  |
|--------------------------------------------------------------------|-----------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------|--------------|--|--|--|
| Facilities Design                                                  |                       | impa                                                       | act.                                                                                                   |                     |                                     |              |  |  |  |
| Eco-friendly facility<br>design                                    |                       | ines to minimize footprint and impact                      | Meet a recognized standard for design                                                                  |                     |                                     |              |  |  |  |
| Design for end-of-life re-<br>use                                  | potential re-us       | d and implement<br>se scenarios during<br>ity design       | Meet a recognized standard for reduced environmental                                                   |                     |                                     |              |  |  |  |
| Water                                                              |                       |                                                            | impact thr                                                                                             | ough b              | uilding                             | re-          |  |  |  |
| Total fab* water<br>consumption (liters/cm <sup>2</sup> )<br>[1]   |                       | 14                                                         | use; e.g., l                                                                                           |                     |                                     |              |  |  |  |
| Total site water<br>consumption reduction                          | Establish<br>baseline | Reduce total<br>consumption 10%<br>from baseline<br>levels | Reduce total consumption additional<br>10%                                                             | Reduce tota         | total consumption additional<br>10% |              |  |  |  |
| Total UPW consumption<br>(liters/cm <sup>2</sup> ) [1]             |                       | 8                                                          | 7                                                                                                      |                     |                                     |              |  |  |  |
| UPW<br>recycled/reclaimed** (%<br>of use)                          |                       | 70                                                         | 75                                                                                                     |                     |                                     |              |  |  |  |
| Energy (electricity, natural                                       | gas, etc.)            |                                                            |                                                                                                        |                     |                                     |              |  |  |  |
| Total fab* energy<br>consumption (kWh per<br>cm <sup>2</sup> ) [1] |                       | 1.9                                                        | 1.6                                                                                                    | 1.35                |                                     |              |  |  |  |
| Total site energy<br>consumption reduction                         | Establish<br>baseline | Reduce total<br>consumption 10%<br>from baseline<br>levels | Reduce total consumption additional<br>10%                                                             |                     |                                     | And ditional |  |  |  |
| Cleanroom thermal<br>management                                    | Establ                | sh baseline                                                | Reduce heat rejection from process<br>and ancillary equipment to<br>cleanroom air by 15% from baseline | and ancillary equip |                                     |              |  |  |  |

### **Sustainability and Product Stewardship**

| Year of Production                                                                                 | 2007                                                                                      | 2008                                                                  | 2009                                                                 |                                                         |                                                  |                                 | 2019                         | 2020                            | 2021      | 2022   |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------------------------|------------------------------|---------------------------------|-----------|--------|--|
| Sustainability Metrics                                                                             |                                                                                           |                                                                       |                                                                      | Develop                                                 | key enviroi                                      | nmental                         |                              |                                 |           |        |  |
| Facilities Eco-design                                                                              | criteri<br>metrics<br>minimiza                                                            | lop eco-de<br>ia, establis<br>s and targ<br>ed enviror<br>rint and in | shing<br>ets for<br>nmental                                          | (KEPIs) and establish                                   |                                                  |                                 |                              | ental footprint, and safety and |           |        |  |
| Carbon footprint                                                                                   |                                                                                           | ommon me<br>ablish basel                                              |                                                                      | baseline.                                               |                                                  |                                 |                              |                                 |           |        |  |
| Product Eco-design                                                                                 | Develop key environmer<br>performance indicators<br>(KEPIs)* and establish<br>baseline    |                                                                       |                                                                      |                                                         |                                                  |                                 | Reduce KEPIs* additional 10% |                                 |           |        |  |
| Design for ESH                                                                                     |                                                                                           |                                                                       |                                                                      |                                                         |                                                  |                                 |                              |                                 |           |        |  |
| Materials                                                                                          | Develop key environmental<br>performance indicators<br>(KEPIs)* and establish<br>baseline |                                                                       | performance indicators Reduce KEPIs* 10% Reduce KEPIs* Reduce KEPIs* |                                                         |                                                  | Reduce KEPIs* additional 109    |                              |                                 | al 10%    |        |  |
|                                                                                                    |                                                                                           |                                                                       |                                                                      | of ESH impacts during the v                             |                                                  |                                 | impared a                    | nd selecte                      | ed)       |        |  |
| -                                                                                                  | perfor                                                                                    | key enviro<br>mance indi                                              | cators                                                               | Reduce KEPIs* 10%<br>from baseline levels               | Reduce KEPIs*<br>additional 10%                  | Reduce KEPIs*<br>additional 10% | Reduce KEPIs* additional 10  |                                 |           | al 10% |  |
| Processes                                                                                          | (KEPI                                                                                     | s)* and est<br>baseline                                               |                                                                      | Alternative low-ESH i<br>planarization a                | ind deposition                                   |                                 | hift to additive processing  |                                 |           |        |  |
| Improved integration<br>of ESH into factory<br>and equipment<br>design                             |                                                                                           |                                                                       |                                                                      | of ESH impacts during the v<br>ESH design guidelines, m |                                                  |                                 |                              |                                 | ed)       |        |  |
| End-of-Life                                                                                        |                                                                                           |                                                                       |                                                                      |                                                         |                                                  |                                 |                              |                                 |           |        |  |
| Ease of<br>decommissioning<br>and decontamination<br>for facility re-use/re-<br>claim              | impleme                                                                                   | nprehend<br>nt potentia<br>ios during<br>design                       | al re-use                                                            | Reduce environmental i<br>design fo                     | tal impact through building design<br>for re-use |                                 |                              | Ĩ                               |           |        |  |
| Ease of<br>decommissioning<br>and decontamination<br>for equipment re-<br>use/re-claim<br>Slide 29 |                                                                                           |                                                                       |                                                                      | Design process and and                                  | illary equipment for disas                       | sembly and re-use/recla         | iim                          |                                 | UFACTURIN | M      |  |

## **Potential Solutions**

- Nanomaterial risk assessment methodology and tools development
- Integrate Key Environmental Performance Indicators into materials selection
- Additive processing
- Imprint patterning for advanced technology nodes
- Alternative low-ESH impact processes for planarization
- Alternative 3-D etch processes
- High efficiency rinses
- Real-time, on-line, speciating sensors for UPW
  recycle



### Addressing ESH During Technology Development

- Early ESH risk information on R&D materials and processes is important to
  - Prevent potential ESH showstoppers (ensures materials with regulatory bans and policy bans are not being introduced)
  - Minimize negative impacts and costs
  - Minimize future potential ESH liability
  - Avoid potential delays in process implementation due to ESH issues/risks
  - Allow for greater flexibility in considering technology options and making strategic business decisions



## **Final Thoughts**

- From "Beyond The Green Corporation," January 29, 2007, *Business Week* cover story:
  - Assets of socially responsible mutual funds increased
    - \$12 billion in 1995
    - \$178 billion in 2005
  - Sustainability factors "...show that companies tend to be more strategic, nimble, and better equipped to compete in the complex, highvelocity global environment."

