

SRC/SEMATECH ERC for Environmentally Benign Semiconductor Manufacturing

Depositing and Patterning a Robust and "Dense" Low-k Polymer by iCVD

December 11, 2008

Nathan J. Trujillo

Karen K. Gleason

Anatomy of an integrated circuit

Massachusetts Institute of Technology

10,000

1,000

together!

Acquired electric dipole moment per unit volume: Polarization

k: How low can you go?

Air to get us there...

•Although *k* scales with porosity, mechanical properties of porous low-k typically scale as (1-P)³

•Advantageous to start from a dense film with a lower *k*

D.D. Burkey , K.K. Gleason, J. Vac. Sci. Technol. A, (2004) 22 (1)

Need for environmentally friendly low-k

Үөаг	2001	2003	2004	2007	2010	2013	2017
Technology Node (nm)	130	130	90	65	45	32	20
2001 Roadmap	3.0-3.6	3.0-3.6	2.6-3.1	2.3-2.7	2.1	1.9	1.8
2003 Roadmap		3.3-3.6	3.1-3.6	<mark>2.7-3.0</mark>	2.3-2.6	2.0-2.4	2.0
2006 Roadmap				≤2.4	≤ 2.2	≤ 2.0	≤ 1.8
Updated 2006 Roadmap				2.3-2.7	2.1-2.4	1.8-2.1	1.6-1.9
EHS for CVD and Spin-On	Minimum emissions/waste processes				75% Chemical Utilization	90% Chemical Utilization	

Manufacturable Manufacturable Solutions Known

Solutions Unknown

To Summarize: Need k = 2.1 by 2012 and 90% raw chemical utilization by 2011!

Attractive ILDs have...

iCVD Process chemistry preserves functionality

Low-k iCVD precursor: V4D4

- Free volume of siloxane ring for low-k
- Chemical structure analogous to commercially used low k organosilicate glass (OSG) precursors such as TOMCATS
- Four vinyl groups make ideal for free radical polymerization via iCVD
- No need for cross linker
- 3-D network from "puckered" ring

1,3,5,7-TETRAVINYLTETRAMETHYLCYCLOTETRASILOXANE Novel iCVD Precursor

Si-O-Si region deconvolution

Annealing increases "cage-like" structure

Reduced film density with anneal

Increased crosslinking with --CH3 removal

Remaining methyl groups indicate an open film structure

Loss of –CH3 improves mechanical properties, yet sufficient groups remain to help keep k low

High connectivity at higher temperatures

Mechanical enhancement

•Enhanced mechanical properties ≥ 200 °C suggests bond rearrangement

•Greater than 0.5 GPa hardness above percolation threshold

•Hardest film associated with lowest dielectric constant. No trade-off between *k* and H.

Atomic composition by X-ray Photoelectron Spectroscopy (XPS)

 Constant composition ≤ 200 °C suggests bond rearrangement

 Increased 'Q' groups from oxygen injection at high temperatures responsible for improved H and M

 Between 200 ℃ to 400 ℃, constant Si:O with decreased Si:C indicates Si-Si bond formation

Thermo Gravimetric Analysis (TGA): decomposition and reaction in several stages

Staged decomposition, compared to porous-MSQ

•Enhanced reactivity in air, not just thermal dissociation

•Stable mass retention is larger, suggests oxygen incorporation

Spin-On MSQ precursor with 38% porogen loading

A. Zenasni et al. Thin Solid Films 516 (2008) 1097–1103

Several chemistries indicated by Residual Gas Analyzer (RGA)

- •Major decomposition events occur at lower temperatures for films annealed in air
- •Over 60 potential species tracked by TGA/RGA system
- •No water detected in asdeposited film
- Most species evolve during first two events.
- •The third event mainly represents -CH3 decomposition

Reduced polarizability results in lower k

Curing behavior for annealed films

 Annealed films would be most attractive for application

 In subsequent thermal cycles, annealed films, > 400 °C, stable thickness within 1%

 No water uptake in cured film, as evidenced by FTIR

 Film loss in curing process comparable to literature

Additive polymer patterning using self-assembled mask (no traditional lithography)

•Non-Conventional lithography offers: Cost-saving alternative to conventional photolithography.

No need for expensive steppers

Low-*k* iCVD p(V4D4) Patterns: 25 nm features & no traditional lithography

Decreasing Template Diameter

Eliminates need for etching of low-k, a problematic step

Multi-scale patterned low-*k* by template assisted assembly

"Top Down" helps "bottom-up": Capillary Force Lithography Template

In summary

- iCVD is a low-energy process for depositing a novel low-k precursor V4D4
- The high degree of organic content in the as-deposited films affords the ability to systematically tune the film properties by annealing.
- The incorporation of atmospheric oxygen, at high temperatures, enhances the mechanical and electrical properties of the films.
- These "dense" annealed films provide favorable mechanical and electrical properties for incorporating thermally sensitive porogen molecules
- Multi-scale features were patterned for the dielectric constant polymer, down to 25 nm, without the need for environmentally harmful solvents or expensive lithography tools

