In Situ Characterization of the Mechanical **Aspects of CMP**

James Vlahakis, PhD, Caprice Gray, PhD, Nicole Braun, MS, Douglas Gauthier, MS

Prof. Robert White¹, Prof. Chris Rogers, & Prof. Vincent Manno

Industrial advisors:

^{1.} Corresponding author: Robert White, r.white@tufts.edu

Objectives

Multi-scale, multi-dimensional in situ CMP characterization

Obtain in-situ images of the slurry layer thickness during CMP and quantify wafer-pad contact during polishing – Caprice Gray, PhD (May 2008)

DELIF: Contact/Film thickness

Mechanical: Global forces, motion, MRR Concurrent measurement of spatially averaged force (3-axis, COF, moments), force spectra, wafer attitude, and material removal rate under a variety of polishing conditions – James Vlahakis, PhD (August 2008)

Measure local (100 µm scale), high sample rate (0.1 ms) asperity scale forces at the pad-wafer interface during CMP – Andrew Mueller, MS (May 2007) & Douglas Gauthier (MS Candidate, November 2008) MEMS: Microscale force sensors

PIV/Flow Vis: Visualizing full-pad flows (Feasibility study) Investigate the feasibility of using particle image velocimetry (PIV) to quantitatively measure particleslurry flow in-situ. – Nicole Braun, MS (May 2008)

Laboratory Scale Polisher

- Laser sensors for wafer pitch & roll.

Laboratory Scale Polisher

-Wafer and pad co-rotate.

-Wafer rotation rate is maintained at 10% above the platen rotation rate.

-Slurry injection point, platen rotation rate, downforce, and slurry dilution are varied.

Dual Emission Laser Induced Fluorescence

Dual Emission Laser Induced Fluorescence (DELIF)

- In-situ contact images
- 6 ns time integration, 2 images/sec (nanosecond laser pulse)
- ~3 micron/pixel to resolve asperity sized features
- Pads (all polyurethane based): CMC D100, CMC D200, Fruedenburg FX9, IC1000

DELIF: Film Thickness

Two cameras:

(1) wavelength of slurry dye

(2) wavelength of pad fluorescence

Image ratio cancels source intensity variation

Brighter regions are thicker fluid layers.

DELIF Depth Calibration

Square wells of known depth are etched into BK7 glass wafers, and the resulting DELIF intensity in the wells is measured under normal polishing conditions.

production, Ra=0.2 μ m, polyurethane) pad is low-noise and linear. On a rough pad (Cabot D100, Ra=8 μ m), the pad roughness is on the same order as well depth, so data scatter is much greater. Slope also changes due to changes to the optical properties of the pad.

DELIF Example Results

-Images above show slurry depths between grooves varying from 100 μm down to zero.

-Image to the left is an example contact image. We may miss contact close to groove edges due to optical bleeding.

DELIF: Static Contact

Histogram of height with thresholding gives contact percentage.

Static (no rotation) contact area on <u>ungrooved pads</u> is linearly pressure dependent

CMC D100 un-grooved pad, BK7 glass wafer

9:1 Cab-o-sperse SC1 slurry (fumed silica, 3 wt% at this dilution)

DELIF: Static Contact

Measured static contact area on grooved pads at low downforce shows more variability; this appears to be a limitation of the optical technique at groove edges.

Condition	Pad V	Wafer V	Relative	Load
Time (min)	(RPM)	(RPM)	V~(m/s)	(psi)
19	60	66	0.61	0.3
29	60	66	0.61	0.3
42	60	66	0.61	0.3
56	60	66	0.61	1.7
62	30	63	0.37	1.7
70	30	33	0.31	1.7
83	60	66	0.61	0.3

• AC Grooved CMC D100 Pad (Cabot Microelectronics)

• 12% wt. fumed silica slurry (Cab-osperse SC1, Cabot Microelectronics)

• Contact percentage is between 0.1-1% across all images. Median is 0.2-0.3%.

• This is the same as was measured statically, suggesting that static measurements are relevant.

Tufts University

Box Plot Box Bounds – 25% to 75% Black Line = Median

Contact increases with increasing pressure (0.2% to 0.3% as we go from 0.3 psi to 1.7 psi)

Contact does not change much as velocity changes. This is consistent with the static/dynamic observation.

<u>Box Plot</u> Box Bounds – 25% to 75% Black Line = Median Red Line = Mean Error Bars – 10% & 90% Points – outlying data

ERC Teleseminar, Sept 18 2008

CMC D100 pad, AC grooves, 3:2 Cabo-sperse SC1 (12 wt%, fumed silica)

Contact *decreases with conditioning time* for the first
40 minutes of conditioning and break in.

• *Other studies*: Agrees with Borucki, *et al,* Lake Placid, 2007. Opposite trend from Elmufdi and Muldowney, MRS, 2007.

• It is possible that the regions of contact are becoming smaller with conditioning, and we are losing the ability to detect with DELIF due to spatial resolution limitations of the method.

CMC D100 pad, AC grooves, 3:2 Cabo-sperse SC1 (12 wt%, fumed silica)

On a Stribeck curve (plotted vs. pseudo-Sommerfeld number... viscosity is constant here), contact percentage decreases slightly with V/P, weakly suggesting an elastohydrodynamic regime, although the scatter is considerable.

CMC D100 pad, AC grooves, 3:2 Cab-osperse SC1 (12 wt%, fumed silica)

Material Removal Rate

- Material removal rate (MRR) is Prestonian.
- MRR is 50-600 nm/min over the 0.1 to 3.1 psim/s range.
- MRR can vary dramatically with injection point in some cases – here, we see MRR drops nearly to 0 with outer injection.

AC grooved CMC D100 pad, 12% by wt fumed silica slurry.

Global Forces – Time Domain

- CoF exhibits a harmonic component at platen rotational rate.
- Occasional bursts of stick-slip are seen in time domain data.
- Stick-slip more prevalent at lower velocities-higher pressures combinations

Global Force Measurement

Spectra vary with slurry dilution. High frequencies are indicative of stick-slip.

ERC Teleseminar, Sept 18 2008

Coefficient of Friction

- CoF is usually between 0.5-0.55, except in one extreme case (high velocity, low downforce).

- MRR varies considerably over this range; hence CoF and MRR are not directly related.

AC grooved CMC D100 pad, 12% by wt. fumed silica slurry, center injection point.

Wafer Attitude

• Three laser displacement sensors are mounted in the rig to measure the wafer pitch and roll during polishing.

• Wafer displacement is correlated to pad angular position (measured with an encoder).

Time Domain Data

- Pitch and roll also exhibit oscillations with a period equal to the pad rotation rate (1 second in this case).

-Wafer is always nose up at approximately 0.2-0.3 degrees.

-Roll and pitch variation are 0.1-0.2 degrees peak-to-peak.

es silica slurry, center injection point, 1.4 psi, 0.6 m/s (60 rpm).

AC grooved CMC D100

pad, 12% by wt. fumed

Wafer Attitude

Wafer is consistently pitched "nose-up" (leading edge up) by 0.2-0.3 degrees with little variation across speed and pressure.

Average roll is less than 0.1 degrees in all cases.

AC grooved CMC D100 pad, 12% by wt. fumed silica slurry, center injection point.

Wafer Attitude and CoF

MEMS Force Sensors

MEMS Force Sensor Fabrication

- PDMS is cast over an SU-8 mold
- PDMS structure is de-molded and bonded to a glass wafer with sensors exposed
- A thin metal film (Chromium) is applied to the top surface to increase contrast during observation

Sputter a thin Cr layer to increase optical contrast

MEMS Sensor Calibration

Calibration is linear elastic and agrees very well with FEA simulation of post deflection using standard modulus values for PDMS (750 kPa, v=0.5).

O₂ plasma treatment results in stiffening of the posts, so calibration is performed after polishing as well as before.

<u>Note:</u> Technique adapted from M. Hopcroft, et al, Fatigue and Fracture of Engineering Materials and Structures. 28(8), (2005).

MEMS Sensor Integration

Pressed into acrylic CMP axle linkage

•

•

•

MEMS Sensor Integration

Sensor deflection is measured during polishing using an integrated high-speed microscopy setup.

Asperity Level Forces

Image processing extracts motion of the post from highspeed (10,000 fps) video.

Deflected

Not deflected

Each point corresponds to the force (direction and magnitude) measured at each 100 microsecond time step. The average force direction aligns with the direction of pad travel.

Asperity Level Forces

Lateral force vs. time on a 80 μ m post. 30 rpm (0.3 m/s), 0.8 psi, 9:1 slurry (3% by wt fumed silica slurry), ungrooved IC1000 pad.

Asperity Level Forces: Trends

0.4 psi = 2.8 kPa

Since CoF is on the order of 0.5 globally, this suggests that approximately

1-5% of the structures are bearing the majority of the load (note this is an unconditioned pad).

RMS lateral force for 80 and 90 μ m diameter PDMS posts, 3% fumed silica slurry, ungrooved IC1000 pad, no conditioning, no wafer rotation.

Force Interpretation

Silicon Force Sensors

Silicon sensors are under development to span the same force range, but allow us to polish a hard, less tacky material so we can condition.

Flow Visualization

Variables of interest:

- 1. Slurry injection point.
- 2. Pad grooving.
- 3. Wafer speed.
- 4. Downforce.

Flow visualization using oil drop tracers allows determination of:

- 1. Slurry path.
- 2. Slurry residence.
- 3. Presence of vorticity.
- 4. Presence of bow waves.

Data is available at: <u>http://docs.google.com/Doc?id=dc9dhhdb_13fphfz7dp</u>

Example of Flow Visualization

Pad grooving is observed to have a major impact on slurry flow patterns around the wafer.

Ungrooved FX9 pad: Old slurry dominates wafer bow wave.

XY Grooved FX9 Pad: New slurry dominates wafer bow wave.

AC Grooved D100 Pad: Shearing of old and new slurry, mixing at bow wave.

For inner injection point, 35 rpm, conditioning, 12% wt fumed silica slurry.

Example of Flow Visualization

Injection point also has an impact, this is most pronounced with flat (ungrooved) pads.

Inner Injection: Old slurry dominates wafer bow wave, considerable mixing. <u>Mid Injection:</u> New slurry dominates wafer bow wave, considerable mixing. Outer Injection: New slurry dominates the box wave, very little mixing.

For ungrooved pad, 35 rpm, conditioning, 12% wt fumed silica slurry.

Quantitative Flow - PIV

ERC Teleseminar, Sept 18 2008

Vector Field Assembly

PIV results in a full vector flow field, as long as the contrast is good and frame rate is high enough.

In-Situ PIV: Slurry Velocity

• Initial measurements were carried out at slow speeds (2-5 rpm) which give relative pad wafer velocities of 0.02 - 0.05 m/s.

• We find slurry velocity increasing as we move away from the wafer.

 Slurry speed appears to reach a maximum of 10-30 % of the platen speed, implying through thickness shear at all locations.

ERC Teleseminar, Sept 18 2008

Conclusions

DELIF: Contact/Film thickness

Dynamic contact percentage is between 0.1-1% for a D100 pad across all images. Median is 0.2-0.3%. This is similar to static results, suggesting that static measurements are relevant.
 Slurry film thickness is < 100 μm everywhere outside the grooves.

Mechanical: Global forces, motion, MRR

MRR is Prestonian. CoF is 0.5-0.55 for all but extreme cases.
Mean nose up pitch of 0.3 deg. Mean roll is zero. Both exhibit 0.1 degrees peak-to-peak at the pad rotation frequency.

MEMS: Microscale force sensors

-80-90 μm diameter PDMS structures experience surface shear on the order of 20 kPa, with peak-to-peak variation of 20 kPa. -Surface shear varies somewhat with velocity and downforce, but does not appear to be a direct indicator of MRR.

-The combination of these results suggests that increasing downforce spreads the load over more contact areas, increasing global MRR but not changing local MRR.

PIV/Flow Vis: Visualizing full-pad flows

-Pad scale slurry flow patterns (outside the wafer) are strongly influenced by pad grooving and slurry injection point. They are not strongly influenced by rotation rate or downforce. Full PIV is feasible and shows slurry slowing near the wafer.

Publications 2007-2008

- Gray, C., White, R. D., Manno, V. P., and Rogers, C. B. "Simulated Effects of Measurement Noise on Contact Measurements between Rough and Smooth Surfaces", **Tribology Letters**, **29** (3), pp. 185-192, 2008.
- D. Gauthier, A. Mueller, R. D. White, V. Manno, C. Rogers, D. Hooper, S. Anjur, M. Moinpour, "*Micromachined Lateral Force Sensors for Characterization of Microscale Surface Forces During Chemical Mechanical Polishing*", in the **Proceedings of the Materials Research Society**, MRS Spring Meeting, March 24-28, 2008.
- D. Gauthier, A. Mueller, R. D. White, V. Manno, C. Rogers, S. Anjur, M. Moinpour, "*Micromachined Lateral Force Sensors for Characterization of Microscale Surface Forces During Chemical Mechanical Polishing*", in **Proceedings of Nanotech 2008**, Boston, MA, June 1-6, 2008.
- N. Braun, C. Gray, A. Mueller, J. Vlahakis, D. Gauthier, V. P. Manno, C. Rogers, R. White, S. Anjur, M. Moinpour. *"In-Situ Investigation of Wafer-Slurry-Pad Interactions during CMP"* in the **Proceedings of the International Conference on Planarization/CMP Technology,** Dresden, Germany, October 25-27, 2007.
- Gray, C., Rogers, C. Manno, V., White, R., Moinpour, M., Anjur S.."Determining Pad-Wafer Contact using Dual Emission Laser Induced Fluorescence", in the Proceedings of the Material Research Society, Vol. 991, Symposium C, Advances and Challenges in Chemical Mechanical Planarization, 2007.
- Mueller, A. White, R. D., Manno, V., Rogers, C., Barns, C. E., Anjur, S., and Moinpour, M. "*Micromachined Shear Stress Sensors for Characterization of Surface Forces During Chemical Mechanical Polishing*" in the
 Proceedings of the Material Research Society, Vol. 991, Symposium C, Advances and Challenges in Chemical Mechanical Planarization, 2007.