Application of Shear Force Spectral Analysis in STI CMP

Y. Sampurno ¹, F. Sudargho ^{1,2}, Y. Zhuang ^{1,2}, T. Ashizawa ³, H. Morishima ³ and A. Philipossian ^{1,2}

¹ Department of Chemical Engineering, University of Arizona, Tucson, AZ, USA
 ² Araca, Inc., Tucson, AZ, USA
 ³ Hitachi Chemical Co. Ltd., Tokyo, Japan

Outline

- 1. Objectives
- 2. Polishing Apparatus
- 3. Abrasive Particle Size Studies
- 4. STI Patterned Wafers Studies
- 5. Summary

Objectives

- Investigate the effect of abrasive particle size (in ceria-based slurries) on:
 - Shear force (F_v)
 - Coefficient of friction (COF)
 - Removal rate (RR)
- Determine whether spectral analysis (based on raw force data) can generate unique spectral fingerprints before, during and after transition to Si₃N₄ during polishing of STI patterned wafers

The Araca APD – 500 Polisher & Tribometer

Abrasive Particle Size Studies Experimental Conditions

- Diamond disc conditioner: 107 mm MMC TRD 100 grit
- Conditioning force: 5.8 lb_f (25.8 N)
- Conditioning : In-situ at 30 RPM disc speed & 10 per minute sweep frequency
- Wafers: 200 mm blanket PETEOS
- Wafer pressure : 3 PSI (20.7 KPa)
- Sliding velocity : 93 RPM for platen and 87 RPM for wafer carrier
- Slurry flow rate : 200 cc/min
- Slurry: Four different ceria-based slurries

	1	Ш	Ш	IV
D ₅₀ (nm)	160	180	190	200
D ₉₉ (nm)	400	500	700	1000

- Pad : 500 mm RHEM IC1000 A2 K groove
- Polishing time: 60 seconds

Raw Force Measurement

$$COF_i = \frac{Shear Force_i}{Down Force_i}$$

Coefficient of Friction (COF)

7

COF Results (n = 5)

Removal Rate Results (n = 5)

Correlating RR to COF for all 4 Slurries

Modeling the Effect of Abrasive Particle Size

$$\delta_{w}^{3} + \left(\frac{9 \pi^{2}}{8} \frac{H_{w}^{2}}{E_{cp}^{2}} - 3\right) D_{p} \delta_{w}^{2} + 3 D_{p}^{2} \delta_{w} - D_{p}^{3} = 0$$

 $H_w = 8.3 \times 10^9 Pa$ $E_{cp} \approx E_{sp} = 3.33 \times 10^7 Pa$

K. Johnson, Contact Mechanics (1985) Y. Zhao and L. Chang, Wear **252**: 220-226 (2002)

Modeling the Effect of Abrasive Particle Size

δ _w Wafer	$\Delta V = \pi$	$\left({D_p^2 \delta_w \over 4} + ight.$	$\frac{\left(D_{p}-\delta_{w}\right)^{3}}{3}$	$-\frac{D_{p}^{3}}{6}$
$\delta_{\rm P}$ $D_{\rm P}$	$N_a = A_t$	$\left(\frac{6 X_v}{\pi D^3}\right)^{2/3}$	N _{ao} ≈	$\left(\frac{6 X_v}{\pi D^3}\right)^{\frac{2}{3}}$
Pad				ΠD_p
		Wear ≈	$\Delta V.N_{ao}$	

	D ₅₀			D ₉₉				Total			
	D _P (nm)	δ _w (nm)	ΔV (nm³)	N _{ao} (nm ⁻²)	Wear (nm)	D _P (nm)	δ _w (nm)	ΔV (nm³)	N _{ao} (nm ⁻²)	Wear (nm)	Wear (nm)
Slurry 1	160	0.19	9.3	5.97E-5	5.51E-4	400	0.48	145.1	4.47E-7	1.03E-4	6.19E-4
Slurry 2	180	0.22	13.2	4.72E-5	6.20E-4	500	0.60	283.4	2.86E-7	1.29E-4	7.05E-4
Slurry 3	190	0.23	15.6	4.24E-5	6.54E-4	700	0.84	777.6	1.46E-7	1.80E-4	7.72E-4
Slurry 4	200	0.24	18.1	3.82E-5	6.89E-4	1000	1.20	2267.2	7.14E-8	2.57E-4	8.55E-4

Correlating COF to Theoretical Extent of Wear

Correlating Experimental RR to Theoretical Extent of Wear

14

STI Patterned Wafer Studies Experimental Conditions

- Diamond disc conditioner: 107 mm MMC TRD 100 grit
- Conditioning force: 5.8 lb_f (25.8 N)
- Conditioning : *In-situ* at 30 RPM disc speed & 10 per minute sweep frequency
- Wafers: 200 mm SKW STI patterned wafers
- Wafer pressure : 3 PSI (20.7 KPa)
- Sliding velocity : 93 RPM for platen and 87 RPM for wafer carrier
- Slurry flow rate : 200 cc/min
- Slurry: Ceria-based slurry with D₅₀ of 190 nm (D₉₉ of 700 nm)
- Pad : 500 RHEM IC1000 A2 K groove
- Polishing time: 110 seconds

Shear Force Measured on STI Patterned Wafers

COF Transients for 5 Wafers

Polish Time

	Transition Start (s)	Transition End (s)
Average	56.4	71.4
SD	3.4	4.5
RSD	6.1%	6.3%

Coefficient of Friction

Before		During	After
	Transition	Transition	Transition
Average	0.361	0.510	0.566
SD	0.004	0.006	0.008
RSD	0.1%	0.3%	0.5%

Comparing to Data in the Literature

• IC1000 pad

D. Lim et al., Surface & Coatings Technology 200:1751-1754 (2005)

Force Transients for 5 Wafers

Polish Time

	Transition Start (s)	Transition End (s)
Average	56.4	71.4
SD	3.4	4.5
RSD	6.1%	6.3%

Variance of Shear Force (σ^2)

	Before	During	After
	Transition (lb _f ²)	Transition (lb _f ²)	Transition (lb _f ²)
Average	58.7	57.8	33.6
SD	2.8	7.7	9.2
RSD	4.7%	13.3%	27.4%

Variance of Down Force (σ²)

	Before	During	After
	Transition	Transition	Transition
	(lb _f ²)	(lb _f ²)	(lb _f ²)
Average	2.3	2.2	3.4
SD	0.03	0.22	0.19
RSD	1.3%	10%	5.5%

Spectral Analysis of Raw Force Data

Spectral Analysis of Shear Force for STI Patterned Wafer No. 1

Before Transition

100

During Transition

After Transition

1E + 1

Spectral Analysis of Shear Force for Wafer Nos. 2 – 5

Spectral Analysis of Down Force for STI Patterned Wafer No. 1

1E + 11E+0-

1E-1

Before Transition

155

Spectral Analysis of Down Force for Wafer Nos. 2 – 5

Summary

- During blanket PETEOS CMP, larger cerium oxide particles induce higher COFs which also lead to higher RRs
- At higher RRs, correlation between theoretical wear and RR becomes non-linear. This is possibly due to a shift from mechanically-limited process (i.e. the model's assumption) to a chemically-limited process (due to nature of ceria particles)
- Transition to silicon nitride is also detected through:
 - Lower variance of shear force
 - Higher variance of down force
 - Higher COF
- Force spectral analysis shows unique spectral fingerprints capable of systematically distinguishing vibrational events before, during and after transition to Si₃N₄ during STI CMP