Tribological, Kinetic, Thermal and Flow Characteristics of PPS and PEEK Retaining Rings

X. Wei ¹, Y. Sampurno ¹, F. Sudargho ^{1,2}, Y. Zhuang ^{1,2}, L. Borucki ², C. Wargo ³ and A. Philipossian ^{1,2}

¹ Department of Chemical Engineering, University of Arizona, Tucson, AZ USA

² Araca Incorporated, Tucson, AZ USA

³ Entegris Corporation, Billerica, MA USA

Outline

- 1. Introduction & Objectives
- 2. Polishing Apparatus
- 3. Wear Studies
- 4. Slurry Entrainment (i.e. Mean Residence Time) Studies
- 5. Summary

Introduction & Objectives

- The effect of retaining ring design and materials of construction, and their interaction with various aspects of the CMP process, have not been widely reported in the literature
- In the past 8 years, the number of direct references are 20 30X less than their slurry or pad counterparts
 - Appx. 55 US patents
 - Appx. 15 US patent applications
 - Appx. 10 articles in technical journals and trade magazines
- Our goal is to develop methods and perform experiments to determine how ring design and materials of construction affect:
 - Shear force (average and variance)
 - Wear rate
 - Temperature
 - Pad micro-texture
 - Slurry entrainment

Araca APD – 500 Polisher & Tribometer

Material – 1 ... PPS (polyphenylene sulfide) ... Design – 1 only Material – 2 ... PEEK (polyetheretherketone) ... Design – 1 and – 2

Wear Studies ... Experimental

- Interferometry

- Wear Test (includes real time temp. & force)
 - 200 mm blanket wafer
 - RHEM IC1020 A4 M groove pad
 - Fujimi PL 4217 ILD slurry at 150 cc per minute
 - 4 inch MMC TRD 100 grit diamond disc rotating at 30 RPM and sweeping at 10 times per minute
 - In-situ pad conditioning at 5.8 lb_f
 - 7 PSI ring pressure
 - 81 RPM platen velocity
 - 76 RPM wafer & retaining ring velocity
 - 4 hours

- Interferometry

Wear Results

- Pre and post interferometry results from the micro-machined trenches indicates the following wear rates:
 - PPS 1 28.2 microns per hour
 - PEEK 1 24.0 microns per hour
 - PEEK 2
 23.5 microns per hour
- Micrometry results (taken from areas adjacent to the micro-machined trenches) indicate a difference of ± 13 percent compared to interferometry results

COF, Variance and Temperature Results

Spectral Analysis of Raw Shear Force Data

Time domain \rightarrow Frequency domain

Shear Force Spectral Analysis

PPS ... Type – 1

Shear Force Spectral Analysis

PEEK ... Type – 1

Shear Force Spectral Analysis

PEEK ... Type – 2

Post-Wear Pad Surface Height PDFs

Post-Wear Pad Surface Height PDFs

Preliminary COF and Variance Results

PEEK ... Type – 3

A new design ... please contact Entegris for details

Slurry Entrainment Studies ... Experimental

- PEEK 1 and PEEK 2
- 2 and 4 PSI ring pressure
- 100 and 200 cc per minute slurry flow rate
- 0.6 and 1.2 m per second sliding velocity
- 1 min polish
- RHEM IC1020 A4 M groove pad
- Undiluted CMC iCue600Y75 copper slurry as 'INITIAL' slurry
- 9 : 1 (water : CMC slurry) as 'FINAL' slurry
- 4 inch 3M full-face A165 diamond disc rotating at 95 RPM and sweeping at 11 times per minute
- In-situ pad conditioning at 5.8 lb_f

Residence Time Distribution Technique

Time of switching from INITIAL to FINAL slurry

COF – to – Concentration Calibration Curves

In all 16 combinations of experimental conditions, R-square ranged from 0.916 to 0.999

Slurry Mean Residence Time Results

PEEK – 1 (top) and PEEK – 2 (bottom)

- Effect of Flow Rate
 - Higher flow rates decrease MRT (on average, a 2X increase in flow causes MRT to decrease by only 25 percent)
 - CMP is an open system with plenty of slurry being wasted

- Effect of Sliding Velocity
 - Higher sliding velocities increase MRT (on average, a 2X increase in sliding velocity causes MRT to increase by 30 percent)

Low Velocity (left) and High Velocity (right)

(constant flow rate and pressure in both cases)

... DEUVEF images explain as to why MRT increases as platen speed increases ...

- Effect of Pressure
 - Higher pressures decrease MRT (on average, a 2X increase in pressure causes MRT to decrease by 15 percent)

Laser Confocal Microscopy Examples of Pad Contacting Features at Low (top) and High (bottom) Pressures

q

m D M & E an Ma and a f & and accession of a source and FILOD LAVARANDE LOVER CONCORPERING CONCERNENCE 3249813061962888830908130819000

- Effect of Retaining Ring Design
 - Design 1 is 10 20 percent more efficient in getting slurry in and out of the wafer – pad interface

Preliminary MRT Results

- **Effect of Retaining Ring Design**
 - **Design 3** is just as efficient as Design 1 in getting slurry in and out of the wafer – pad interface
 - Design 3 does not have the 2-factor (i.e. $P \times V$) effect seen in Design 1 and Design – 2

PEEK ... Type – 3

A new design ... please contact Entegris for details

Summary

- Our goal has been to develop methods and perform experiments to determine how ring design and materials of construction affect:
 - Shear force (average and variance)
 - Wear rate
 - Temperature
 - Pad micro-texture
 - Slurry entrainment