Toxicity Evaluation of HfO₂ Nanoparticles

Scott Boitano¹, Reyes Sierra², Jim Field², Buddy Ratner³, Farhang Shadman²

Measuring cytotoxicity of nanoparticles in human cells

¹ Arizona Respiratory Center & Dept. of Physiology and Dept Chemical & Environmental Engineering², University of Arizona ³ University of Washington Engineered Biomaterials (UWEB)

HfO₂ Model Nanoparticles

• Reference <u>"Micron-sized</u>" HfO₂ particles

• Reported particle size: < 44 μm;

• Measured size (Laser Diffraction and Electron Microscopy; Sierra Group) showed wide range (200 nm-20 μ m) with distribution peaks at **500 nm** and **6 \mum**

Batch 1 nano-sized HfO₂ particles: "<u>Batch-1 360</u>"

- Reported particle size: ~20 nm
- Measured size showed range of 60 nm 1 μm with a peak at 360 nm

Batch 2 nano-sized HfO₂ particles: "<u>Batch-2 224</u>"

Reported particle size: ~1-2 nm

Measured size showed range of 90 nm - 2 µm with a major peak at
 224 nm

• Batch 3 nano-sized HfO₂ particles: "Batch-3 169"

- Reported average particle size: ~100 nm
- Measured size showed range of 70 400 nm with a peak at 169 nm

Mammalian Cell Models: Epithelium

- We consider two major routes of exposure:
 - Lung (via inhalation or systemic exposure)
 - Skin (via direct contact with nanoparticles)
- Both are lined by epithelial cells that form a barrier to keep outside exposures from underlying cells and tissue
- We use two epithelial cell models for preliminary studies:
 - Human bronchial epithelial cell line (16HBE14o- cells)
 - Human skin epithelial cell line (HaCat)

3

Measurements of Cytotoxicity with Fluorescence: Live/Dead Assay

- Cells are incubated with HfO₂ for 2 hr to induce toxicity
- Cells are then exposed to two low-fluorescent compounds: Ethidium homodimer (EtHD-1) and Calcein-AM
- EtHD-1 can only enter damaged cells, where it interacts with DNA and increases its fluorescence 40x (ex/em ~495 nm/~635 nm)
- Calcein-AM can crosses the plasma membrane of live cells.
 Once inside, the acetyl-methoxy ester groups (AM) are cleaved by non-specfic cell esterases, resulting in charged and highly fluorescent molecules, Calcein (ex/em ~495 nm/~515 nm)
- Net result: In tact, Live, cells fluoresce Green and Dead cells fluoresce Red

Live/Dead with Micron-sized HfO2

Major size peaks at 500 nm and 6 μm

SEM

Live-Dead Fluorescence (1000 ppm)

- Slight cytotoxicity at 1000 ppm
- Strong cytotoxicity at 3000 ppm
- •16HBE14o- (lung) epithelial cytotoxicity was similar

Live/Dead with Batch-1 360 HfO₂

50 ppm

250 ppm

500 ppm

- Slight cytotoxicity at 250 ppm
- Strong cytotoxicity at 500 ppm
- Smaller HfO₂ particles are more toxic to HaCat (skin) epithelial cells
 16HBE14o- (lung) epithelial cells were similar

Live/Dead with Batch-2 224 HfO₂

S3400 15.0kV 15.3mm x10.0k SE

250 ppm

50 ppm

 Slight cytotoxicity at 1000 ppm and at 2000 ppm

Although Batch-2 224 contain smaller particles than Batch-1 336, less cytotoxicity is observed in HaCat (skin) epithelial cells
16HBE14o- (lung) epithelial cells were similar

500 ppm

Live/Dead with Batch-3 169 HfO2

HaCat with Batch 3 HfO₂

250 ppm

1000 ppm

2500 ppm

- No cytotoxicity up to 2500 ppm
- HfO₂ particles with the smallest peak size displayed the least cytotoxicity in HaCat (skin) epithelial cells
- 16HBE14o- (lung) epithelial cells not tested

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Live-Dead Cytotoxicity Summary

- Live-Dead assay is a straight forward measure for cytotoxicity that works well with mammalian cells
- Similar to Microtox and MTT Assays from Sierra Group, Batch-1 360 HfO₂ displayed highest cytotoxicity
- Smaller HfO₂ sizes did not correlate directly with increased toxicity
- SIMS measurements (Ratner Group) showed different contaminants between Batch-1 360 and Batch-2 224 -might the contaminants be important in cytotoxicity?
- Live-Dead assay is, however, limited:
 - Necessary to choose a single time point for analysis
 - Requires plasma membrane disruption and thus may not reflect HfO₂-induced cell compromise

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Scrape Wound Assay to Evaluate Cytotoxicity

 Drag a glass pipet across an epithelial monolayer (16HBE14o- cells used for these studies)

 Follow re-establishment of the monolayer using video microscopy

 We used this technique to evaluate if HfO₂ particles altered wound repair

Batch-1 360 HfO2 Inhibits Wound Repair Note: MPG videos of each repair are available via download 0 ppm Time: 0 hr 0.5 hr 1.0 hr 1.5 hr 2.0 hr

250 ppm for 2 hr incubation and wash out for microscopy

50 ppm for 12 hr

Scrape Wound Assay to Evaluate Cytotoxicity : Summary

• Scrape wound assay provides a sensitive measure of cellular physiology without the use of fluorescence

- HfO₂ has detrimental effects on cell spreading and/or migration (e.g., cytotoxicity) prior to inducing cell death
- Cellular effects of HfO₂ as low as 50 ppm (lower concentrations not yet tested)
- Results suggest that mechanisms involved in migration (e.g., adhesion) could be cytotoxic targets for HfO₂

 Scrape wound assay can be difficult to set up and, is limited for high throughput analysis

Measuring Cytotoxicity Using Impedance

The xCELLigence System (Roche)

Uses electrical impedance across interdigitated microelectrodes integrated on the bottom of tissue culture E-Plates to monitor cellular events in real time without the incorporation of fluorescent labels

- In effect, more cells attached = more impedance
- As cells die (cytotoxicity), lose impedance
- 96 well format allows for relatively high throughput analysis

Impedance Measurement of Batch-1 360 Cytotoxicity on 16HBE14o- Cells

- Grow 16HBE14ocells on E-Plates
- Add HfO₂ and monitor impedance over time
- Experiments done in series of n=6

Effects of Batch 1 HfO₂

- Cells tolerate 100 ppm HfO₂ over the 8 hr period
- 300 ppm and 500 ppm HfO₂ display increasing cyotoxicity
- Note agreement with Live-Dead assay at 2 hrs, but increased cytotoxicity of 500 ppm over time

Synergistic toxicity of HfO2 and Arsenic

- Arsenic is a metalloid toxicant that is actively removed from regulated drinking water
- Iron nanoparticles are used to eliminate Arsenic from drinking water
- Arsenic can also be part of materials used in NP production
- Research Question: Does association with HfO₂ lead to cytotoxicity?

- 100 ppb As is not cytotoxic
- 300 ppm HfO₂ is slightly cytotoxic
- Pre-incubation of 300 ppm HfO₂ with 100 ppb Arsenic significantly increases cytotoxicity

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Summary

- A mixture of assays can be used to evaluate cytotoxicity
- Size of HfO₂ alone cannot account for HfO₂ cytotoxicity (in agreement with Sierra Group Data)
- Contaminants and or HfO₂ shape/agglomeration can influence cytotoxicity -- how much each of these components contribute to cytotoxicity is unknown
- Considerations for future studies:
 - Immortalized cell models do not necessarily reflect in vivo tissue
 - Delivery of nanoparticles to cells not necessarily representative of *in vivo* environment

Future Directions

- 1) Improved characterization of model nanoparticles
- 2) Understanding mechanisms of cytoxicity
- 3) Improved cell models and delivery Normal Human Bronchial Epithelial Cells

C)Microscopy chamber

B) Inverted

Rat Alveolar Epithelial Cells

Credits

Principal Investigators:

<u>Scott Boitano¹</u>, Reyes Sierra², Jim Field², Buddy Ratner³, Farhang Shadman²

¹ Arizona Respiratory Center & Dept. of Physiology and Dept Chemical & Environmental Engineering², University of Arizona ³ University of Washington Engineered Biomaterials (UWEB)

Student Investigators:

Cara L. Sherwood: Department of Cell Biology and Anatomy, University of Arizona Nathan Runyan: Department of Physiology, University of Arizona

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing