

Accelerating the next technology revolution.

Computer Simulations of the Interaction between Carbon Based Nanoparticles and Biological Systems

Chi-cheng Chiu The University of Texas at Dallas 12/11/2009

BioNanoSciences Group The University of Texas at Dallas

- PI: Pantano, Dieckmann, Draper, Nielsen, Musselman
- Wide range of expertise : analytical chemistry, cell biology, surface chemistry, computational chemistry, etc.

Accelerating the next technology revolution.

Predicting, Testing, and Neutralizing Nanoparticle Toxicity

Outline

- Introduction
 - Background
 - Simulation Method
- C₆₀ with lipid bilayer
- Carbon Nanotube with lipid bilayer
 - Carboxylation
 - Diameter dependence
 - Multi-walled vs Single-walled
- Conclusion
- Future plan

Introduction

- Increased attention about the environmental, health, and safety implications of nanomaterials.
- Carbon based nanoparticles (CNPs) :
 - C₆₀ (buckyball)
 - single / multi walled carbon nanotubes (SWNT/MWNT)
 - graphene
 - enormous potential applications in nanoelectronics
- To interact with living organism, CNPs may cross a membrane barrier

Study the interaction between CNPs and a biological membrane

- Difficult to study biological membranes at molecular level
- Experimental problem :
 - easily perturbed heterogeneous system
 - i.e. membrane proteins
- Computational problem :
 - time and size scales
 - *realistic models* for biological systems
 - Recent review: Monticelli et al. Soft Matter, 2009, 5, 4433-4445

S. O. Nielsen et. al., J. Phys.: Condensed Matter 16, R481 (2004)

Computer Simulations – Molecular Dynamics (MD)

- The energy of chemical structures, in combination with statistical mechanics, allows for, in principle, all properties of a system to be calculated.
- Calculate intermolecular forces → microscopic dynamics
 → macroscopic properties
- Used in drug design, atomic layer etching, FIB processing

• Force field (FF) :

 $U_{bends}(r_{ijk}) = k_{\theta}(\theta_{ijk} - \theta_0)^2$

- uses simple mathematical functions to treat the structure-energy relationship
- validated against physical properties

Previous BioNano MD Studies Carbon Nanotube Non-covalent Functionalization

- CNT functionalization
- CNT surface modification
- Atomistic MD
- No membrane involved

Chiu et al. J Phys Chem B 2008, 112, 16326 Chiu et al. Biopolymers: Peptide Science 2009, 92, 156

Chiu et al. AcsNano submitted

UTD

Coarse-Grain Molecular Dynamics

- Coarse-Grain (CG) MD :
 - reduced number of particles
 - larger system, longer simulation time
- CG force field developed by Shinoda et al. (AIST, Japan)
- Parameterized against experimental and atomistic simulation data
 - Surface tension
 - Transfer free energy
 - Membrane structural data

Shinoda et al. Mol Simul. 2007, 33, 27 Devane et al. J. Chem. Theory Comput. 2009, 5, 2115 Shinoda et al. Soft Matter 2008, 2454, 4

Dipalmitoylphosphatidylcholine (DPPC)

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

head

tail

CG model for C₆₀

- Based on the CG force field, we developed a CG model for C₆₀
- Validate the model against experimental and atomistic simulation data
- Transfer free energy
- Aggregation behavior
- Simple model for the membrane system:
 - Water
 - Hydrocarbon

Validation of C₆₀ aggregation

 C60 dimerization free energy in water and in hydrocarbon

Compare with atomistic simulation

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

14

Aggregation of C_{60} in DPPC Lipid Bilayer

- Two different initial conditions
- C₆₀ form clusters inside a bilayer
- Aggregation may affect toxicity

CG model for carbon nanotube

- Given the validation of the C₆₀ CG model, we applied the model to CNTs
- Aggregation / bundling behavior in water
- Aggregation may affect toxicity
- Different degree of carboxylation
- Dimerization free energy

Carboxylated SWNT Bundling in Water

ΔG_{dimer} ► ◄

- Use aspartic acid (ASP) or glutamic acid parameters to functionalize the SWNT to represent carboxylated SWNT
- 5%, 10%, 15% functionalize SWNT
- Agrees with experimental data (from PI Dr. Musselman)

Bajaj, P. M.S. Thesis, The University of Texas at Dallas, Richardson, TX, 2008

CNT interacting with DPPC bilayer

- NT radius = 7.48Å
- 10 ns simulation

Conclusion

- Developed and validated CG molecular simulation force field for carbon based nanoparticles (fullerenes)
- C₆₀ form clusters in a lipid bilayer
- Pristine CNTs spontaneously diffuse into the membrane
- 5% carboxylated SWNTs locate near the lipid head group region; above 10% carboxylation, it is no longer thermodynamically favorable for SWNTs to penetrate the bilayer.
- Larger diameter SWNTs locate deeper inside the bilayer and induce lipid tail structuring.
- DWNTs have stronger interactions with both lipid and water molecules.

Future Plan

- Protein coated CNTs
- Different membrane systems
 - Monolayer systems in lung alveoli (model for CNP inhalation in lung)
- CNT/C60 effect on membrane mechanical properties
 - Effect on cellular processes
- Correlate with cytotoxicity data