

Radical Oxidation of Ge for Interface Gate Dielectric GeO₂ Formation in MOS gate stacck

Masaharu Kobayashi, Gaurav Thareja and Yoshio Nishi Dept. of Electrical Engineering, Stanford University

Contents

- Introduction
- Motivations and objectives
- Experiments
- Results and discussions
 - Kinetics of oxidation of Ge
 - Electrical property of interface gate dielectric GeO₂.
- Summaries

Introduction: Ge MOS technology

- · Ge as a performance booster
 - High electron/hole mobility
 - High process compatibility
 - Low temperature process
 - Possible V_{dd} scaling

	Si	Ge
Electron μ (cm ² /Vs)	1600	3900
Hole μ (cm ² /Vs)	430	1900
Band gap (eV, 300K)	1.12	0.66
Dielectric constant	11.9	16
Melting point (°C)	1415	937

- Key issues: Interface property of Ge MOS gate stack
 - GeO₂ is regarded as a promising interface gate dielectrics*
 - Since GeO₂ decomposition/GeO evaporation temperature is very low (430°C), low temperature oxidation is needed with high density of oxidant source

*D. Kuzum, IEDM2007, T. Takahashi, IEDM2007, Y. Nakakita, IEDM2008

Slot-Plane-Antenna (SPA) system*

- High density/highly reactive atomic oxygen radicals (O*) generation
 *T. Ohmi et
- Enables low temperature oxidation
 - <u>Below 400°C</u> for Si and Ge

*T. Ohmi et al., Proc of IEEE 2001

T. Sugawara et al., JJAP 2005

Objectives

- Study oxidation kinetics of radical oxidation
 - Comparing to thermal oxidation
- Examine the electrical property of interface gate dielectric GeO₂
 - CV characteristics of MOS capacitor
 - Thermal stability
 - Band alignment

Experiments

- Sample preparation
 - (100) and (111) Ge surface was cleaned by PRS100 organic remover and by HCI/HF
 - Surface was oxidized by Slot-Plane-Antennal (SPA) radical oxidation system
 - Thermal oxidation was also done as a reference
- Kinetics study
 - Thickness was measured by ellipsometry and XPS
- Electrical property
 - 5nm ALD AI_2O_3 was deposited on GeO_2/Ge
 - Sputtered AI metal pad
 - 400°C FGA anneal
 - XPS was used to identify surface chemical property
 - Synchrotron radiation photoemission spectroscopy (SRPES) was used for band offset measurement

- Temperature dependence
 - Radical oxidation has lower activation energy (0.37eV) than thermal oxidation (1.64eV)
 - Due to high reactivity of radicals with small radius

Oxidation rate (1)

- Radical vs thermal oxidation (ellipsometry)
 - No orientation dependence was observed in radical oxidation between (100) and (111) Ge
 - Faster oxidation on (100) Ge, opposite to Si

Oxidation rate (2)

- Radical vs thermal oxidation (XPS)
 - No orientation dependence was observed in radical oxidation between (100) and (111) Ge
 - Faster oxidation on (100) Ge, opposite to Si

Mechanism of orientation independence

- Thermal oxidation
 - Decomposition/evaporation limited oxidation process because of low decomposition temperature

(1) Ge + $O_2 \rightarrow GeO_2$

(2) $\text{GeO}_2 + \text{Ge} \rightarrow 2\text{GeO}(s)$

(3) GeO(s) \rightarrow GeO(g) \uparrow

- In Si, SiO₂ decomposition/SiO evaporation rate is higher on (111) because of higher stress in SiO₂ on (111)*
- By the analogy from Si, gross oxidation rate is higher on (100)

- SPA radical oxidation
 - Oxide formation is dominant because of highly reactive oxygen radicals
 - (1) Ge + 2O^{*} \rightarrow GeO₂
 - (2) $\text{GeO}_2 + \text{Ge} \rightarrow 2\text{GeO}(s)$
 - (3) GeO(s) \rightarrow GeO(g) \uparrow
 - Lower oxidation process can also suppress decomposition/ evaporation
 - Highly reactive oxygen radicals with small radius can penetrate on any orientated surface nearly at the same rate*

*T. Ohmi, Proc. IEEE 2001

^{*}J. R. Engstrom, Surf. Sci 1991

Electrical property of GeO₂/Ge interface (1)

- Al/Al₂O₃/GeO₂/Ge Ge MOS capacitor:
 - 350°C ALD Al₂O₃ deposition + 400°C FGA anneal
 - Very small hysteresis and frequency dispersion
 - Low temperature measurement suppresses frequency dispersion due to minority carrier response

Interface state density (D_{it}) of GeO₂/Ge

- Comparison between GeON and GeO2
 - D_{it} was measured by conductance method
 - Significant improvement from GeON
 - Achieved $D_{it} = 1.4 \times 10^{11} cm^{-2} eV^{-1}$ at midgap

Thermal stability

• GeO_2/Ge • A - Significant GeO_2 decomposition and GeO out-diffusion • As grown • $GeO_2/Ge \text{ w/o cap}$ • As grown• $550^\circ C 1 \text{ min}$

- Al₂O₃/GeO₂/Ge
 - Al₂O₃ works as an outdiffusion barrier and maintained GeO₂
 - Suboxide formation

Thermal stability of electrical property

- D_{it} change after PDA
 - D_{it} can still be kept on the order of 10^{11} cm⁻²eV⁻¹
 - However, as low thermal budget as possible is required to avoid degradation due to suboixde formation

- Band diagram by SRPES
- Build band diagram by SRPES
 - E_{gGeO_2} =5.5eV
 - $-E_c = 1.2 \pm 0.3 \text{eV}, E_v = 3.6 \pm 0.2 \text{eV}, \text{ which satisfies}$ criterion* of band offset > 1 eV to suppress leakage

*J. D. Wilk, JAP2001

Summaries

- Orientation-independent oxidation was observed by SPA radical oxidation
 - Highly reactive oxygen radicals with small radius and low activation energy
 - Useful for uniform oxide formation in multi-gate FinFETs or nano-wire FETs
- Obtained excellent CV characteristics and achieved very low D_{it} (1.4x10¹¹cm⁻²eV⁻¹)
- Build band diagram
 - Band offset (E_c =1.2±0.3eV, E_v =3.6±0.2eV) satisfies requirement of leakage suppression

Future works

- Gaurav Thareja will take over this project
- Scalability of GeO₂ interfacial layer
- MOSFET performance with GeO₂ interfacial layer grown by SPA radical system
- Application to multi-gate FET or nano-wire FETs