Toxicity Evaluation of HfO₂ Nanoparticles

<u>Reyes Sierra¹</u>, Jim Field¹, Scott Boitano², Buddy Ratner³, Farhang Shadman², Antonia Luna¹, Isabel Barbero¹, Monica Rodriguez¹

² Arizona Respiratory Center & Dept. of Physiology, University of Arizona

³ University of Washington Engineered Biomaterials (UWEB)

Engineered Nanomaterials (ENM)

Engineered structures with at least one dimension at 100 nm or less

Increasing industrial / commercial applications, e.g. Catalysis Medicine Environmental technology

Cosmetics

Semiconductors

Microelectronics

http://www.slashgear.com

Nanotechnology projected to become a 1 trillion US \$ market by 2015.

Nanoparticles in Semiconductor Manufacturing

CMP slurries

- SiO₂
- Al_2O_3
- CeO₂

HfO₂ (immersion photolithography)

Quantum dots

Carbon nanotubes

Colloidal silica (10-130 nm) (Source: www.bjgrish.com)

Nanoparticles - ESH Concerns

Concern about the adverse effects of nanomaterials on biological systems

- ENM: unusual properties due to their small size
- Increasing evidence that some ENM cause toxicity

 \bigcirc

Poor understanding of "nanotoxicity"

Nel et al. Science, 2006, 311:622-627

 \bigcirc

Uncertainty about the real-life hazards of engineered nano-materials

Need for principles and procedures to ensure the safety of nanotechnology for workers, consumers, and the environment.

Engineered Nanomaterials – Possible Interactions w. Biological Tissue

Nel et al. Science, 2006, 311:622-627

Objectives

• Evaluate the toxicity of hafnium oxide, HfO₂, nanoparticles (NP).

 Physico-chemical characterization of the HfO₂ samples

Samples: Particles Tested

Reference <u>micron-sized</u> HfO₂ particles

Reported particle size: < 44 μ m

Batch 1 nano-sized HfO₂ particles: "<u>Batch-1 NP</u>"

Reported average particle size: approx. 20 nm

Batch 2 nano-sized HfO₂ particles: "Batch-2 NP"

Reported average particle size: approx. 1-2 nm

Batch 3 nano-sized HfO₂ particles: "Batch-3 NP"

Reported average particle size: approx. 100 nm

Particle Size Distribution (PSD) & Zeta Potential

Particle size distribution (PSD)

Electron microscopy

Dynamic light scattering (Malvern Zeta Sizer Nano ZS)

Laser diffraction (micron-sized HfO₂)

Zeta potential

Electrophoretic mobility (Malvern Zeta Sizer Nano ZS)

Preparation of dispersions

HfO₂ dispersed in 100 mg/L Acetic Acid (pH 4)

Ultrasonic treatment (130 W, 20 KHz, 60% amplitude) for 5 min

Particle Size Distribution Reference micron-sized particles

PSD - Laser Diffraction

Alfa Aesar #35666

HfO₂ "micron sized"

Particle Size Distribution

HfO₂ Batch 3 "100 nm"

HfO₂ Batch 3 "100 nm"

Particle Size Distribution

Batch 1- HfO₂ ("20 nm")

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

13

Particle Size Distribution

HfO₂ batch 2 ("2 nm")

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

14

HfO₂ batch 2 ("2 nm")

Element Microanalysis (EDS)

HfO₂ - Batch 2 ("2 nm")

Particle Size Distribution (PSD) & Zeta Potential

	Ref. Micro- sized	Batch 1	Batch 2	Batch 3
Average size (nm)				
- Expected	< 44,000	20	2	100
- DLS/Diffraction	500 / <u>6,000</u>	<u>360</u>	<u>224</u> / 952	<u>169</u>
- TEM/SEM (<u>range</u>)	300-1,000	ND*	2,000-8,000	150-260
- Filtration/ICP (range)			78% 20-200	
Zeta	52	44	66	64

* Agglomerates: 1,000-5,000 nm

Average particle size of some HfO₂ appears to be different than reported by supplier!!

Toxicity Evaluation

Evaluate the potential toxicity of HfO₂ nanoparticles

- Microtox (bacterium, Vibrio fischeri)
- Methanogenic Toxicity (anaerobic microbial consortium)
- Mitochondrion Toxicity Test or MTT (ureter epithelium cells)
- Live-Dead Assay (skin epithelium cells)

Microbial Toxicity Tests

Microtox Test: Monitoring of bioluminiscence vs. toxicant concentration

Uses the bacterium, Vibrio fischeri

Methanogenic Toxicity Tests:

Monitoring of CH_4 production rate at different toxicant concentrations.

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

19

Methanogenic Toxicity

20

Microtox Results

HfO₂ micron-sized vs. HfO₂ nano Batch 1 "20 nm"

HfO₂ Batch 1 toxic to the bioluminescent bacterium used in the Microtox assay

Methanogenic Toxicity

HfO₂ micron-sized vs. HfO₂ nano Batch 1 "20 nm"

Nano-HfO₂ Batch 1 not toxic to methanogens in wastewater treatment sludge

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

22

Mitochondrial Toxicity Test (MTT)

Live cells are blue colored

HfO₂ micron-sized vs. HfO₂ nano Batch 1 "20 nm"

HfO₂ Batch 1 nanoparticles toxic to mitochondria in eukariotic (human) cells

Toxicity

Microbial & Mitochondrial Assays

	50% Inhibiting Concentrations			
	Methanogenic	Microtox	MTT	
Ref. micron	NT*	NT*	NT**	
Batch 1	NT**	463	294	
Batch 2	NT**	330	NT**	
Batch 3	NT**	3,000	180	

NT*= Not toxic at conc < 5,000 mg/L

NT**= Not toxic at conc < 2,500 mg/L

Micron-sized HfO₂ shows low toxicity

Toxicity of nano-sized HfO₂ varies depending on 1) the batch, no correlation with particle size; 2) cell type.

Live - Dead Result (Skin epithelium cells, HaCat)

Nano-HfO₂ (Batch 1 "20 nm")

HaCat, 3000 ppm

Green: Live cell Red: Dead cell

HaCat, 300 ppm

HaCat, 3 ppm

Live Dead Result (Skin epithelium cells, HaCat)

Nano-HfO₂ (batch 1, "20 nm")

Micron-HfO₂

Live Dead Result (Lung epithelium cells, 16HBE14o-)

Nano-HfO₂ (batch 1, "20 nm")

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

28

Dead-Live Assays

		Inhibitory Concentrations (mg/L)		
		IC25	IC100	
Ref. micron	skin cells	NT	NT	
Batch 1	skin cells lung e. cells	1,000 > 300	3,333 3,333	
Batch 2	skin cells	NT*	NT*	
Batch 3	skin cells	NA	NA	

NT = not toxic (~ 20% inhibition at 5,000 mg/L)

NT* = not toxic (~ 10% inhibition at 2,000 mg/L)

Micron-sized HfO₂ shows low toxicity

Toxicity of nano-sized HfO₂ varies depending on the batch, no correlation with particle size

29

ROS Dye (HaCat)

Nano-HfO₂ (Batch 1 "20 nm")

HfO₂ nanoparticles (Batch 1) elicit the formation of <u>reactive oxygen species (ROS)</u> in lung epithelium cells (Hacat)

Surface Chemistry – Secondary Ion Mass Spectrometry (SIMS)

Surface Characterization by ToF SIMS

Various organic/inorganic contaminants detected on the surface of HfO₂ NPs

32

The nature of the impurities varied depending on the source of the NPs

Surface Characterization by ToF SIMS (positive spectra)

33

Surface Characterization by ToF SIMS (negative spectra)

Surface Characterization Summary/ Preliminary Conclusions

SIMS Analysis

Impurity	Ref Micro	NP1	NP2
	MICIO	20 1111	1-2 1111
Light Organics (<100 MW)	+	+	+
Heavy Organics (>100 MW)			+
Silicon	+		+
Chlorine	+	+	
Bromine		+	
Rare Earth Metals	+	+	+

• The nature of the impurities varied depending on the source of the NPs

Ratner et al.

35

Synthesis of HfO₂ Nanoparticles

TOPO= Tri-n-octylphosphine oxide

Zimmerman et al. 2008. J Photopolym Sci Technol. 21(5):621-629

Conclusions

- Reference micron-sized HfO₂ was <u>not toxic</u> in various assays with microbial and mammalian cells.
- The toxicity of HfO₂ nanoparticles varied depending on the batch and cell type used. HfO₂ "Batch 1" was <u>moderately toxic</u> in most bioassays.
- The differences observed in the toxicity of HfO₂ nanoparticles do not appear to be correlated with particle size, they are most likely related to their specific surface chemistry.