Surface Activation and Deactivation for ALD

Shawn Miller and Anthony Muscat Department of Chemical and Environmental Engineering University of Arizona, Tucson, AZ 85721

SRC/Sematech, ERC Task ID 425.026 Project Update / Teleseminar June 25, 2009

Overall goals

- Simplify the multistep subtractive processing used in microelectronic device manufacturing
 - Develop an additive processing approach
 - Minimize water, energy, chemical and materials consumption
 - Reduce processing cost
 - Sematech process model

• Focus on high-k gate stack

- Fabricate low defect high-k/substrate

Self-aligned Gate Stack

Self-aligned Gate Stack

Atomic layer deposition of high-k films

- Break overall reaction into two half reactions and run one at a time to achieve self-limiting growth
 - Surface exposed to sequential pulses of metal and oxygen precursors to deposit oxide

• Two step chemical reaction

$$- \text{TiCl}_4 + \mathbf{OH} = \mathbf{TiCl}_3 - \mathbf{O} + \text{HCl}$$

-
$$2(H_2O) + TiCl_3 - O = OH - Ti - O + 3(HCI)$$

Deactivating ALD

- Coat surfaces with molecules/atoms which do not react with precursors
 - Stable surface is required; no change in surface chemistry after precursor exposure, no adsorbed water, and no thermal breakdown

Deactivating ALD

- Stopping ALD
 requires complete
 surface coverage
 - Defects will start ALD deposition
 - Unblocked hydroxyl groups
 - Adsorbed water
 - Other chemical defects or binding sites on surface

Deactivating with SAMs

- Self assembled monolayer
 - Reacts with the surface to form a single layer
 - Unreacted SAM molecules can act as defect sites
 - Binds to all potential ALD nucleation sites
 - Prevents H₂O from absorbing during ALD
 - Water in SAM can act as a defect site
- Deposited with either liquid or vapor phase methods

Liquid Phase

Vapor phase

8

SAM Molecules

SAM molecules	Formula	Structure
Octadecyltrichlorosilane OTS	C ₁₈ H ₃₇ Cl ₃ Si	^{CI} CI-SI CI
Triacontyltrichlorosilane TTS	C ₃₀ H ₆₁ Cl ₃ Si	CI 33Å
Triacontyldimethylchlorosilane TDCS	C ₃₂ H ₆₇ CISi	33Å
Tridecafluoro-1,1,2,2- tetrahydrooctylsilane FOTS	C ₈ H ₇ F ₁₃ Si	FFFFF FFFFF FFFFFF
Octadecyldimethoxysilane ODS	C ₂₁ H ₄₃ O ₃ Si	СНЗ 0 СНЗ-0-Si СНЗ-0-Si
Trimethylchlorosilane TMCS	C ₃ H ₉ CISi	снз 4Å снз Si сі снз сі

Selective Area ALD

- Many ways to pattern surface
 - Photolithography of oxide, followed by piranha etch and HF etch
 - Shown in schematic
 - Contact / liftoff printing of SAM using pre-formed stamp
 - Hard mask of pattern used to expose desired areas to chemical treatment
- Cover surface with selectively reactive molecules
 - Bind SAM molecules only where deactivation is desired
- Deposit high-K layer via ALD only where desired

Literature review

- SAM density, thickness, and water contact angle determine the quality and effectiveness of the SAM¹
- Required 2hrs for the water contact angle to plateau at 110° for an octadecytrichlorosilane (OTS) SAM⁴
 - Commonly used SAM molecule, high water contact angle
- Larger precursors are easier to deactivate than smaller or more volatile precursors ^{2,3,4,6}
 - Lower probability that the precursor will find a binding site
 - "Ru nucleation is not as sensitive to quality of the monolayer surface as observed for Hf or Zr oxide and Ti based film deposition" ⁴

5)

- 1) J. Hong, D. Porter, R Sreenivasan, P. McIntyre, S. Bent. Langmuir, 23, 1160-1165, (2007)
- 2) X. Jiang, S. Bent. Journal of the Electrochemical Society, 154 (12), D648-D656, (2007)
- 3) X. Jiang, R. Chen, S. Bent. Surface & Coatings Technology, 201, 799-8807, (2007)
- 4) R. Chen, H. Kim, P. McIntyre, D. Porter, S. Bent. Applied Physics Letters, 86, 191910, (2005)
- R. Chen, H. Kim, P. McIntyre, S. Bent. Chem. Mater., 17, 536-544, (2005)
- 6) K. Park, J. Doub, T.Gougousi, G. Parsons. Applied Physics Letters, 86, 051903, (2005)

11

 E. Färm, M. Kemell, M. Ritala, M. Leskelä. Chem. Vap. Deposition, 12, 415-417, (2006)

Literature review

	Material deposited	Precursors	SAM	SAM formation	Time scale	Cycles of complete deactivated
1	Pt	CH ₃ C ₅ H ₄ Pt(CH ₃) ₃ Air	OTS	Liquid phase 10mM in toluene	48 hours	400 ²
2	HfO2	Hf[N(CH ₃) ₂] ₄ H ₂ O	OTS	Liquid phase 10mM in toluene	48 hours	50 ^{2,3,4}
3	HfO2	HfCl₄ H₂O	Several	Liquid phase 10mM in toluene	48 hours	50 ⁵
4	RuO2	RuCp ₂ Dry Oxygen	OTS	Liquid phase 10mM in toluene	48 hours	300 ⁶
5	Pt HfO2	$CH_3C_5H_4Pt(CH_3)_3$, Air Hf[N(CH_3)_2]_4, H_2O	OTS FOTS	Stamp contact printing	5 minutes	Pt-OTS-100 ^{2,3} Pt-FOTS-0 ² HfO2-OTS-0 ³
6	HfO2	Hf[N(CH ₃) ₂] ₄ H ₂ O	OTS FOTS	Vapor phase SAM and H2O sealed in reactor	48 hours	OTS-50 ¹ FOTS-50 ¹
7	lr	Ir(acac) ₃ O ₂	ODS	Vapor phase Alternating SAM and H2O pulses	1 hour	1000 7

Objectives

- Develop processes that are feasible for industrial applications
 - Deactivate surfaces for longer
 - Form SAM faster
 - Vapor phase delivery
 - Investigate role of water
 - Extend to other surfaces
 - SiO₂, HfO₂, TiO₂, III-V's
 - Explore untested SAM molecules

Liquid phase sample prep and rinse

14

Deactivation results

- Reduced growth rate by factor of 12 for up to 500 cycles
- Potential SAM defects
 - Water in/on SAM
 - Unblocked hydroxyl groups
 - Instability to TiCl₄
 precursor
 - Data spread is primarily due to sample variation
 - OTS, OTS/TMCS,
 OTS w/ long purges
 - TTS, TTS/TMCS, TTS w/ long purges

Effect of water on deactivation

OTS stability when exposed to TiCl₄

- Samples exposed to TiCl₄ pulses only (no H₂O)
- Si peak goes up after TiCl₄ pulses
 - Possible SAM degradation

Conclusion

- Rinsing the SAMs in chloroform gave the highest water contact angle, and one monolayer thickness
- Reduced TiO₂ growth rate by a factor of 12 for up to 500 cycles
- Exposing the SAM to water before ALD and baking the SAM at 170℃ for 24hrs before ALD gave the same amount of titanium deposition after 50 cycles
- Small amount of titanium is present on SAM surfaces after a single TiCl₄ pulse
 - Defects in liquid formed SAMs
 - Degradation of SAM due to $TiCl_4$ is a possible problem

Future work

 Develop high quality SAMs using vapor deposition

- Investigate the role of water in SAM formation

- Continue the study of SAM degradation due to TiCl₄ exposure during ALD
- Continue the study of water in/on the SAM during ALD

Future work

- Pulse water vapor between SAM exposures
 - Develop optimal pulse times
- Lower SAM formation times to practical point for industry

- Develop high quality SAMs using vapor deposition
 - Control pressure and exposure times precisely
 - Develop optimal pressures

Acknowledgements

- SRC/Sematech Engineering Research Center
- ASM
 - Eric Shero
 - Mohith Vergese
 - Steve Marcus
 - Christophe Pomarede