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Overall goals

• Simplify the multistep subtractive processing used 
in microelectronic device manufacturing
– Develop an additive processing approach 
– Minimize water, energy, chemical and materials consumption
– Reduce processing cost

• Sematech process model

• Focus on high-k gate stack
– Fabricate low defect high-k/substrate
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Atomic layer deposition of high-k films
• Break overall reaction into two half reactions and run one 

at a time to achieve self-limiting growth
– Surface exposed to sequential pulses of metal and oxygen precursors to 

deposit oxide 

• Two step chemical reaction

– TiCl4 + OH = TiCl3-O + HCl

– 2(H2O) + TiCl3-O =  OH-Ti-O + 3(HCl)
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Deactivating ALD

• Coat surfaces with molecules/atoms which do not react with 
precursors
– Stable surface is required; no change in surface chemistry after

precursor exposure, no adsorbed water, and no thermal breakdown
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Deactivating ALD

• Stopping ALD 
requires complete 
surface coverage
– Defects will start ALD 

deposition
• Unblocked hydroxyl 

groups
• Adsorbed water
• Other chemical defects 

or binding sites on 
surface
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Deactivating with SAMs
• Self assembled monolayer

– Reacts with the surface to form a 
single layer 

• Unreacted SAM molecules can act as 
defect sites

– Binds to all potential ALD nucleation 
sites

– Prevents H2O from absorbing during 
ALD

• Water in SAM can act as a defect site

• Deposited with either liquid or vapor 
phase methods

Liquid Phase Vapor phase
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SAM Molecules

4ÅC3H9ClSiTrimethylchlorosilane TMCS

26ÅC21H43O3SiOctadecyldimethoxysilane ODS

12ÅC8H7F13SiTridecafluoro-1,1,2,2-
tetrahydrooctylsilane FOTS

33ÅC32H67ClSiTriacontyldimethylchlorosilane TDCS

33ÅC30H61Cl3SiTriacontyltrichlorosilane TTS

26ÅC18H37Cl3SiOctadecyltrichlorosilane OTS

StructureFormulaSAM molecules
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Selective Area ALD
• Many ways to pattern surface

– Photolithography of oxide, followed 
by piranha etch and HF etch 

• Shown in schematic
– Contact / liftoff printing of SAM 

using pre-formed stamp
– Hard mask of pattern used to 

expose desired areas to chemical 
treatment

• Cover surface with selectively 
reactive molecules
– Bind SAM molecules only where 

deactivation is desired

• Deposit high-K layer via ALD 
only where desired
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Literature review

• SAM density, thickness, and water contact angle 
determine the quality and effectiveness of the SAM 1

• Required 2hrs for the water contact angle to plateau at 
110°for an octadecytrichlorosilane (OTS) SAM 4

– Commonly used SAM molecule, high water contact angle

• Larger precursors are easier to deactivate than smaller 
or more volatile precursors 2,3,4,6

– Lower probability that the precursor will find a binding site
– “Ru nucleation is not as sensitive to quality of the monolayer 

surface as observed for Hf or Zr oxide and Ti based film 
deposition” 4
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6) K. Park, J. Doub, T.Gougousi, G. Parsons. Applied Physics Letters, 86, 051903, (2005)

7) E. Färm, M. Kemell, M. Ritala, M. Leskelä.  Chem. Vap. Deposition, 12, 415-417, 
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Literature review
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Objectives

• Develop processes that are feasible for 
industrial applications 
– Deactivate surfaces for longer

– Form SAM faster 
• Vapor phase delivery
• Investigate role of water

– Extend to other surfaces
• SiO2, HfO2, TiO2, III-V’s

– Explore untested SAM molecules
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Liquid phase sample prep and rinse

• Quality OTS layer after only 30 
minutes (not 2hrs)

– 26Å
– 110°water contact angle
– Smaller standard deviation after 48hrs 

in OTS than 30min in OTS
• Chloroform rinse was more effective 

than IPA and Methanol for OTS and 
TTS

OTS Thickness vs Rinsing Method
30 minutes in 10mM OTS in toluene
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Deactivation results
• Reduced growth rate by 

factor of 12 for up to 500 
cycles

• Potential SAM defects
– Water in/on SAM
– Unblocked hydroxyl 

groups
– Instability to TiCl4

precursor

• Data spread is primarily 
due to sample variation

– OTS, OTS/TMCS, 
OTS w/ long purges 

– TTS, TTS/TMCS, 
TTS w/ long purges 
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Effect of water on deactivation

TiO2 Thickness After 50 Cycles
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Ti After TiCl4 pulses
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Conclusion

• Rinsing the SAMs in chloroform gave the highest water 
contact angle, and one monolayer thickness

• Reduced TiO2 growth rate by a factor of 12 for up to 500 
cycles

• Exposing the SAM to water before ALD and baking the 
SAM at 170°C for 24hrs before ALD gave the same 
amount of titanium deposition after 50 cycles

• Small amount of titanium is present on SAM surfaces 
after a single TiCl4 pulse 
– Defects in liquid formed SAMs
– Degradation of SAM due to TiCl4 is a possible problem
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Future work

• Develop high quality SAMs using vapor 
deposition
– Investigate the role of water in SAM formation

• Continue the study of SAM degradation 
due to TiCl4 exposure during ALD

• Continue the study of water in/on the SAM 
during ALD



20

Future work

– Pulse water vapor between 
SAM exposures 

• Develop optimal pulse 
times

– Lower SAM formation 
times to practical point for 
industry

• Develop high quality 
SAMs using vapor 
deposition
– Control pressure and 

exposure times precisely
• Develop optimal pressures
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