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Overall goals

« Simplify the multistep subtractive processing used
In microelectronic device manufacturing

— Develop an additive processing approach

— Minimize water, energy, chemical and materials consumption
— Reduce processing cost
* Sematech process model

 Focus on high-k gate stack
— Fabricate low defect high-k/substrate
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Atomic layer deposition of high-k fiims

 Break overall reaction into two half reactions and run one
at a time to achieve self-limiting growth

— Surface exposed to sequential pulses of metal and oxygen precursors to
deposit oxide

« Two step chemical reaction

METAL

PRECURSOR PURGE _ TiC|4 + OH = TiC|3-O + HCI
~

— 2(H,0) + TiCl,-O = OH-Ti-O + 3(HCl)




Deactivating ALD
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 Coat surfaces with molecules/atoms which do not react with
precursors

— Stable surface is required; no change in surface chemistry after
precursor exposure, no adsorbed water, and no thermal breakdown



Deactivating ALD
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Deactivating with SAMs

« Self assembled monolayer
— Reacts with the surface to form a

}
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 Unreacted SAM molecules can act as
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SAM Molecules

SAM molecules Formula Structure
Octadecyltrichlorosilane OTS C,H.,Cl.Si i 26A
El_/SiWM/D
Cl
Triacontyltrichlorosilane TTS C,,Hs,CL.Si i' 33A
Ll — 3
Triacontyldimethylchlorosilane TDCS | C,,H,,CISi ] 33A
Tridecafluoro-1,1,2,2- C H,F.;Si F FREFF o 12A
tetrahydrooctylsilane FOTS X e
FFF FfpF
Octadecyldimethoxysilane ODS C,,H,.0.Si i 26A
CH3 ~ 0 —/éim
0
CH3 :
Trimethylchlorosilane TMCS C,H,CISi oH3 AA

CH3 —3i -




Selective Area ALD
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« Many ways to pattern surface

— Photolithography of oxide, followed
by piranha etch and HF etch

 Shown in schematic

— Contact / liftoff printing of SAM
using pre-formed stamp

— Hard mask of pattern used to
expose desired areas to chemical
treatment

« Cover surface with selectively
reactive molecules

— Bind SAM molecules only where
deactivation is desired

* Deposit high-K layer via ALD
only where desired
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L iterature review

 SAM density, thickness, and water contact angle
determine the quality and effectiveness of the SAM 1

 Required 2hrs for the water contact angle to plateau at
110°for an octadecytrichlorosilane (OTS) SAM 4

— Commonly used SAM molecule, high water contact angle

e Larger precursors are easier to deactivate than smaller
or more volatile precursors 2:3:4.6

— Lower probability that the precursor will find a binding site

— “Ru nucleation is not as sensitive to quality of the monolayer
surface as observed for Hf or Zr oxide and Ti based film
deposition” 4
J. Hong, D. Porter, R Sreenivasan, P. Mcintyre, S. Bent. Langmuir, 23, 1160-1165, (2007) ) R. Chen, H. Kim, P. Mcintyre, S. Bent. Chem. Mater., 17, 536-544, (2005)
X. Jiang, S. Bent. Journal of the Electrochemical Society, 154 (12), D648-D656, (2007) 6) K. Park, J. Doub, T.Gougousi, G. Parsons. Applied Physics Letters, 86, 051903, (2005)

X. Jiang, R. Chen, S. Bent. Surface & Coatings Technology, 201, 799-8807, (2007) 7) E. Farm, M. Kemell, M. Ritala, M. Leskela. Chem. Vap. Deposition, 12, 415-417,
R. Chen, H. Kim, P. Mclintyre, D. Porter, S. Bent. Applied Physics Letters, 86, 191910, (2005) (2006) 11



| iterature review

Material Precursors SAM SAM formation Time Cycles of
deposited scale complete
deactivated
Pt CH,C.H,Pt(CH,), OTS Liquid phase 10mM | 48 hours 400 2
Air in toluene
HfO2 Hf[N(CH,),], OTS Liquid phase 10mM 48 hours 50 234
H,O in toluene
HfO2 HfCl, Several | Liquid phase 10mM 48 hours 50°
H,O in toluene
RuO2 RuCp, OTS Liquid phase 10mM 48 hours 300 ¢
Dry Oxygen in t0|uene
Pt CH,C,H,Pt(CH,),;, Air| OTS Stamp contact 5 minutes | Pt-OTS-100 23
FOTS printing Pt-FOTS-0 2
HfO2 Hf[N(CH,),],, H,O HfO2-OTS-0 3
HfO2 Hf[N(CH,),], OTS Vapor phase 48 hours OTS-501
H,O FOTS | SAM and H20 sealed FOTS-501
in reactor
Ir Ir(acac), ODS Vapor phase 1 hour 1000
O, Alternating SAM and

H20 pulses
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Objectives

* Develop processes that are feasible for
industrial applications
— Deactivate surfaces for longer

— Form SAM faster
* Vapor phase delivery
* Investigate role of water

— Extend to other surfaces
* SiO,, HfO,, TiO,, llI-V’s
— Explore untested SAM molecules
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Thickness (A)

Liquid phase sample prep and rinse

OTS Thickness vs Rinsing Method
30 minutes in 10mM OTS in toluene
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Quality OTS layer after only 30
minutes (not 2hrs)

— 26A

— 110°water contact angle

— Smaller standard deviation after 48hrs

in OTS than 30min in OTS

Chloroform rinse was more effective
glh_lgsn IPA and Methanol for OTS and

OTS Water Contact Angle vs Rinsing Method
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14



TiO2 Thickness (A)

TiO2 Thickness (A)

Deactivation results

4

Si02-OH
0.34A/cycle

OTS
0.028A/cycle

! ! ! ! |
100 200 300 400 500

ALD Cycles

+ Si02-OH TTS 2sec purge
TTS/TMCS OTS

—+ TTS

gé gg OTS/TMCS

20 40 60 80 100 120 140
ALD Cycles

Reduced growth rate by
factor of 12 for up to 500
cycles

Potential SAM defects
— Water inf/on SAM

— Unblocked hydroxyl
groups

— Instability to TiCl,
precursor

Data spread is primarily
due to sample variation

— OTS, OTS/TMCS,
OTS w/ long purges

— TTS, TTS/TMCS,
TTS w/ long purges
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TiO2 Thickness (A)

Effect of water on deactivation

TiO2 Thickness After 50 Cycles

—

Piranha etched SiO, ALD process, 50 cycles

14 + J kL
12 - > : >
Piranha etched SiO, - SAM coated Si 20 second pulse ALD process, 50 cycles
of water vapor
10 -
g - — — >
Piranha etched §10, SAM coated Si Heated to 170°C for ALD process, 50 cycles

6 -
4 -
2 _
O |
Sample
@ Si02-0OH

[0 OTS 20s water pulse
B OTS 24hrs at 170C

24hrs in Vacuum

D)

No difference in Ti for
heated sample and
water exposed sample
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OTS stability when exposed to TICl,
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17




Conclusion

Rinsing the SAMs in chloroform gave the highest water
contact angle, and one monolayer thickness

Reduced TiO, growth rate by a factor of 12 for up to 500
cycles

Exposing the SAM to water before ALD and baking the
SAM at 170<C for 24hrs before ALD gave the same
amount of titanium deposition after 50 cycles

Small amount of titanium is present on SAM surfaces
after a single TiCl, pulse

— Defects in liquid formed SAMs

— Degradation of SAM due to TiCl, is a possible problem
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Future work

e Develop high quality SAMs using vapor
deposition
— Investigate the role of water in SAM formation

e Continue the study of SAM degradation
due to TICl, exposure during ALD

e Continue the study of water inf/on the SAM
during ALD
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Future work

Butterfly Valve

Precision Leak Valve

N2 Purge Port

N2 Purge Port

e
s
Roughing Valve

— Pulse water vapor between
SAM exposures
* Develop optimal pulse
times
— Lower SAM formation
times to practical point for
industry

* Develop high quality
SAMs using vapor
deposition

— Control pressure and
exposure times precisely

* Develop optimal pressures

.....

S - Load Lock
Sl Gate Valve
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