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Introduction

There are ~600 manufacturer-identified 

nanotechnology-based consumer products currently 

on the market (Woodrow Wilson International Center for Scholars, 

2008).

Development of « in silico » approaches

Acute or repeated exposure to MNPs present in commercial

products may cause systemic, cellular, and/or genomic toxicities.

Methods should be developed that are “capable of studying the

relationship between deposited particles…to determine which

aspects…are best predictors of adverse health effects”*

* Luther, W. editor, Industrial Application of Nanomaterials - Chances and Risks, 

Technological Analysis http://www.zukuenftigetechnologien.de/11.pdf



QNTR modeling workflow 



Difficulties in Modeling of Nanoparticles

NP structures are very diverse a real challenge to develop 

quantitative parameters (descriptors) of MNPs. 

Systematic physico-chemical, geometrical, structural and biological 

studies of NPs are nearly absent.

Computational modeling of nanoparticles is only beginning to 

emerge; best if done in collaboration with experimental scientists.

S. Stern and S. McNeil, Toxicological Sciences, 101(1), 4-21, 2008.



Emerging collaborative project with 

Dr. Russ Mumper, UNC



Research hypotheses

The effects of NPs on different types of human cells depend on the

physical/chemical/geometrical properties of the NPs.
1

Composition, size, shape, aspect ratio, surface area,

chemistry/morphology, zeta potential, chemical reactivity, structural

descriptors.

CHARACTERIZATION OF PARTICLES

Nano-bio interactions with human cells occur relatively rapidly, but the

effects of these interactions are manifested over much longer time

periods.

High-throughput cellular-based assays with endpoints within 2-6 hr

provide useful and predictive information about long-term biological

properties of NPs.
2



Research hypotheses

Toxicological data obtained from in-vitro cellular-based toxicity

assays will correlate reasonably with in-vivo findings.
3

Using physical/chemical characterization and toxicological screens

for an ensemble of MNPs, it will be possible to develop predictive

Quantitative Nanostructure – Toxicity (QNTR) models.

4

The effects of NPs on different types of human cells depend on the

physical/chemical/geometrical properties of the NPs.

High-throughput cellular-based assays with endpoints within 2-6 hr

provide useful and predictive information about long-term biological

properties of NPs.

2

1

Fundamental, comprehensive and predictive knowledge

of the nanotoxicology of MNPs;

Improvements of experimental design and prioritized toxicity

testing, to obtain safer and more efficient nanoparticles.
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Principles of QSAR modeling
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Thousands of molecular descriptors 

are available for organic compounds

constitutional, topological, structural, quantum 

mechanics based, fragmental, steric, 

pharmacophoric, geometrical, thermodynamical  

conformational, etc. 

- Building of models using 

machine learning methods 

(NN, SVM etc.);

- Validation of models 
according to numerous 

statistical procedures, and 

their applicability domains.



Quantitative

Nanostructure

Toxicity 

Relationships

Introducing QNTR modeling
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- Building of models using 

machine learning methods 

(NN, SVM etc.);

- Validation of models 
according to numerous 

statistical procedures, and 

their applicability domains.

Nanoparticle fingerprints Nanoparticle

High-throughput cellular-

based assays



Support Vector Machine (SVM)

Introduced by Vapnik (1995), the SVM approach identifies the best linear separation

between two classes of data. In a multidimensional descriptor space, such separation is

realized by a hyperplane leading to the best linear segregation between data in the

feature space.

What is the feature space ?

Descriptor 1

Descriptor 2

Descriptor space : no linear separation

between data points.

Feature space : linear separation

exists.

Kernel

Function

(Ex: x2, y2 )



Support Vector Machine (SVM)

The SVM algorithm tends to maximize the margin around the

hyperplane separating the two class of compounds. Different kernel

functions and parameters have to be optimized (grid search) in order

to identify the best models.

Support vectors
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Case Study 1

Recently1, 51 diverse NPs were tested in-vitro

against 4 cell lines in 4 different assays at 4 different 

concentrations ( 51x64 data matrix).

1 Shaw et al. Perturbational profiling of nanomaterial biologic activity. PNAS, 2008, 105, 7387-7392

 cross-linked iron oxide (CLIO)-based  (23 NPs)

 pseudocaged nanoparticle (PNP)-based (19 NPs) 

monocrystalline iron oxide nanoparticle (MION)-based (4 

NPs)

 quantum dot-based with a CdSe core, a ZnS shell, and a  

polymer coating (3 NPs)

 two other iron-based MNPs: Feridex IV (approved for in vivo 

imaging) and Ferrum Hausmann (approved for iron 

supplementation)

NANOPARTICLES



Recently1, 51 diverse NPs were tested in-vitro

against 4 cell lines in 4 different assays at 4 different 

concentrations ( 51x64 data matrix).

1 Shaw et al. Perturbational profiling of nanomaterial biologic activity. PNAS, 2008, 105, 7387-7392
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Case Study 1



NPs

Exp. Conditions
Case Study 1

Z scores: assay values were expressed in units of standard deviations of the

distribution obtained when cells are treated with PBS (Phosphate Buffered Saline) alone.

ZNP =  (µNP - µPBS)/ σPBS
µNP : mean of control tests with PBS

σNP : standard deviation of control tests with tests 

Initial

activity

matrix



CS1. Hierarchical clustering of the activity matrix

Clustered Activity Matrix

Clustered Distance Matrix

After the normalization of data, ISIDA/Cluster program* was used to

cluster the activity matrix (51 * 64), using Johnson’s hierarchical

method, Euclidean metrics and complete linkage.

Dendogram

* http://infochim.u-strasbg.fr



Critical information concerning structure-activity 

relationships can be extracted from the analysis of 

clusters

NP type CLUSTER 1 CLUSTER 2 CLUSTER 3 Total

CLIO 7 13 3 23

PNP 7 2 10 19

MION 0 4 0 4

Qt-dot 3 0 0 3

Feridex 0 1 0 1

Ferrum 

Haussmann
1 0 0 1

Total 18 20 13

NP 

Core

CLUST 

1

CLUST 

2

CLUST 

3
Total

Fe2O3 5 0 9 14

Fe3O4 9 20 4 33

Cd-Se 3 0 0 3

Fe(III) 1 0 0 1

Total 18 20 13

A given metal core (i.e, Fe3O4) or

NP category (i.e, Qt-dot), will

induce similar biological effects in

most cases, independent of the

surface modifications.



Is it possible to predict whether a given particle will induce low or

high biological effects using QNTR models?

CS1. QNTR matrix

NP-01    High    0.4865  0.5278  0.2941  0.3986

NP-02 Low     0.4054  0.7222  0.4837  0.6476

NP-03 High    0.4324  0.5833  0.3529  1.0000

NP-04 Low     1.0000  0.5833  1.0000  0.7991

NP-05    High    0.3649  0.4722  0.2353  0.9403

NP-06    High    0.3919  0.6111  0.3333  0.9079

NP-07    High    0.5135  0.5833  0.4052  0.6270

For 44 NPs, size, zeta potential and relaxitivities were available, 

and then normalized between 0 and 1, to form the QNTR matrix. 



• 44 diverse NPs

• MML-WinSVM 

program for Windows

• 5 fold external 

cross-validation

procedure 

CS1. QNTR modeling of 44 diverse NPs
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FOLD1 FOLD2 FOLD3 FOLD4 FOLD5

20% of compounds                EXTERNAL SET

80% of compounds                MODELING SET

Models are built using the modeling set ONLY.



Fold

MODELING SETS EXTERNAL SETS

n
# 

models

% 

accuracy

internal 

5-fold CV

% accuracy n
% 

accurac

y

% 

CCRa

% 

Sensitiv

ity

% 

Specificit

y

1 35 11 51.4 – 60.0 71.4 – 82.9 9 78 83 67 100

2 35 13 51.4 – 60.0 71.4 – 77.1 9 78 75 50 100

3 35 16 57.1 – 62.9 74.3 – 82.9 9 78 78 80 75

4 35 11 60.0 – 62.9 77.1 – 88.6 9 56 55 50 60

5 36 4 66.7 83.3 – 86.1 8 75 67 33 100

aCCR – Correct Classification Rate. 44 73 73 60 86

Prediction performances are surprisingly good : the overall

prediction accuracy for those 44 NPs is equal to 73 %

CS1. QNTR modeling results of 44 diverse NPs

using MML-WinSVM and a 5 fold external cross-validation



CS1. Dose-dependency of NP effects

mg/ml Fe for iron-

based nanoparticles

From the 

analysis of 

activity matrix, 

we also show 

that biological 

effects 

induced by 

NPs are dose-

dependent.



CS2. QNTR of surface modifiers:

modeling of the NPs uptake in PaCa2 cancer cells*

PaCa2: Pancreatic cancer cells

U937: Macrophage cell line

GMCSF: Activated primary human macrophages

RestMph: Resting primary human macrophages

Nanomaterials with precise biological functions have high potential for use in

biomedical applications. Recently, Weissleder et al.* investigated whether the

multivalent attachment of small organic molecules on a same NP can modify its binding

affinity to certain cells.

Unlike the other cell 

lines, the PaCa2 

pancreatic cancer cells 

showed diverse 

cellular uptakes for 

different NPs. 

109 NPs possessing the same core (CLIO) 

but different  organic compounds on their 

surfaces

* Weissleder et al. Nat. Biotechnol., 2005, 23 (11), 1418-1423



Each NP was represented by one single organic compound of its surface.

Classical Dragon molecular descriptors, used for standard QSAR studies,

have been calculated for those small organic molecules only.

CS2. Dataset representation

109 NPs possessing the same core (CLIO) but different organic 

compounds on their surfaces

Metal

Core

FITC (fluorescein

isothiocyanate)

Small organic

compounds
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Fold

Total R2
ext = 0.72, MAE = 0.18

CS2. QNTR modeling results

• 109 surface modifiers and their corresponding PaCa2 uptake

• MML-kNN program using 2D Dragon molecular descriptors

• 5 fold external cross-validation procedure 

PREDICTION PERFORMANCES OF MODELS ARE GOOD

Using our models, 

experimentalists could avoid 

some expensive and time 

consuming compound synthesis 

and cell based assays as well.



Descriptors involved in QNTR models
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Top 20 NPs with high PaCa2 cellular pickup

Top 20 NPs with low PaCa2 cellular pickup

The QNTR approach also gives critical information 

concerning the contributions of each descriptor to NP 

cellular uptake: 

CS2. QNTR modeling results



Conclusions

Preliminary modeling results demonstrate that QNTR models

can successfully predict the biological effects of NPs from their

descriptors either experimentally measured (e.g., first case

study) , or calculated (second case study).

To increase the accuracy and impact of models on the

experiments, we need more systematic experimental

data (structural and biological).

QNTR approach may allow rational design or

prioritization of novel NPs with desired target (physical

and biological) properties.
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