Evaluation of Toxicity and Bioaccumulation of Nanopariticles Using Aquatic Organisms

Yongsheng Chen, Yung Chang, and Qiang Hu

Department of Civil and Environmental Engineering Arizona State University yschen@asu.edu

May 28, 2009

Objectives

- Test toxicity of nanoparticles in several aquatic model organisms
- Evaluate bioconcentration, bioaccumulation, and biomagnification of nanoparticles in aquatic food chains
- Establish relationships between physicochemical properties of NPs and their bioaccumulation and toxicity.

Tested Nanomaterials and Their Bulk Counterparts

Particles.	particle size +	Purity (%)₀				
C ₆₀ +2	< 200 nm+2	99.5 ₽				
SWCNTse	$D \le 2 nm^{-1}$	CNTs>90₽				
	$L = 5-15 \ \mu m^{2}$	SWCNTs>60+				
MWCNTsa	D = 10-20 nm+	> 98.04				
IVI W CIN I Se	$L = 5-15 \ \mu m^{2}$	- 90.04				
Carbon	20.000 nm.	> 95.04				
Black₽	20,000 1111-	- 55.04				
nZnO₽	20 nm.₀	> 99.6				
ZnO/Bulk+3	1,000 nm⊷	> 99.0+2				
nTiO _{2^{e³}}	$\leq 20 \text{ nm}$	> 99.5+				
TiO ₂ /Bulk₽	10,000 nm⊷	> 99.0+2				
nAl ₂ O ₃ ₊ ²	80 nm.	> 99.9				
$Al_2O_3/Bulk_{+^2}$	90,000 nm₊	> 99.0+				
Note: "D" is diameter; "L" is length.						

Model Organisms

 Algae (Green Algae Chlamydomonas reinhardtii)

Daphnia magna

 Zebra fish, Carp, and Embryo

QSAR Models

Pollution Prevention Assessment Framework Office of Pollution Prevention and Toxics - EPA

A collection of software developed to evaluate risk-related properties based on chemical structure.

Characterization of Metal Oxides Nanoparticles

Nanoparticles	TiO ₂ (powder)	TiO ₂ (suspension)	Fe ₂ O ₃	ZnO	NiO	SiO ₂	Hematite
Primary particle size	5 ~ 50 nm	10 ~ 60 nm ¹	5 ~ <mark>25 nm</mark>	50 ~ 70 nm ¹	10 ~ 20 nm ²	10 nm ²	80~ 90 nm ¹
DLS measured average sizes	530 <u>+</u> 30 nm	200 <u>+</u> 10 nm	200 <u>+</u> 10 nm	320 <u>+</u> 20 nm	750 <u>+</u> 30 nm	740 <u>+</u> 40 nm	85 <u>+</u> 3 nm
DLS measured	Bimodal	Bimodal	Bimodal	Bimodal	Bimodal	Bimodal	Mono- modal
distribution	150 & 750 nm	100 & 330 nm	60 & 200 nm	140 & 425 nm	330 & 1400 nm	300 & 2000 nm	85 nm
MFI measured particles > 3 μm ³	9300 <u>+</u> 300 /ml	4800 <u>+</u> 200 /ml	3500 <u>+</u> 400 /ml	4400 <u>+</u> 400 /ml	45000 <u>+</u> 3000 / ml	20000 <u>+</u> 200 /ml	n/a

¹ From SEM/TEM Images; ² From Vendor Report

Stability of Metal Oxide NPs in Water

• The increase in ionic strength induces NP aggregation; however, SiO₂ is more stable than other NPs

ARIZONA

STATE UNIVERSITY

Zhang Y., Y. Chen, et. al, Water research 2008(42):2204-2212

Characterization of particle size and particle number of NPs

Changes in median diameter of the particles of TiO2 and QD NMs in buffer solution from 0 to 48 h

J. Wang, X. Zhang, Y. Chen, et. al, Chemosphere, 2008, 73: 1121–1128.

Characterization of particle size and particle number of NPs

Volume size distributions of TiO2 at different times

J. Wang, X. Zhang, Y. Chen, et. al, Chemosphere, 2008, 73: 1121–1128.

Characterization of particle size and particle number of NPs

J. Wang, X. Zhang, Y. Chen, et. al, Chemosphere, 2008, 73: 1121–1128.

96 h EC50 of Nanoparticles on the Growth of Green Algae

NPs	Regression Equation	Correlation Coefficient <mark>Hig</mark>	EC ₅₀ (mg/L)
nZnO Suspension	y = 38.862x + 49.194	$R^2 = 0.9542$	1.049 ± 0.565
C ₆₀ Suspension	y = 26.42x + 20.456	$R^2 = 0.8988$	13.122 ± 4.182
nTiO ₂ Suspension	y = 39.902x + 2.7719	$R^2 = 0.9275$	15.262 ± 6.968
MWCNTs Suspension	y = 38.468x + 4.3117	$R^2 = 0.9964$	15.488 ± 7.108
SWCNTs Suspension	y = 27.978x + 12.097	$R^2 = 0.8434$	22.633 ± 9.605
nAl ₂ O ₃ Suspension	y = 14.204x - 10.044	$R^2 = 0.5471$ Lov	>1000 toxicity

X. Zhu, L. Zhu, Y. Chen, Journal of nanoparticle research, 2009, Vol.11: 67-75

Effect of TiO2 NMs on growth

J. Wang, X. Zhang, Y. Chen, et. al, Chemosphere, 2008, 73: 1121–1128.

Change of lipid peroxidation paterns and gene expressions

Lipid proxidation (MDA)

J. Wang, X. Zhang, Y. Chen, et. al, Chemosphere, 2008, 73: 1121–1128.

Gene expression profiles of antioxidant enzymes

Transcriptional expression profiles of the genes in *Chlamydomonas* Exposed to 0, 1, 10 or 100 mg/L of TiO2 NMs for 12 h. (a), *sod1*, (b), *gpx*, (c), *cat*, (d), *ptox2*. Relative mRNA levels were normalized with 18S rRNA as the internal standard. d = 0 mg/L(control); s = 1 mg/L, r = 10 mg/L, D = 100 mg/L of TiO2 NMs.

J. Wang, X. Zhang, Y. Chen, et. al, Chemosphere, 2008, 73: 1121–1128.

Summery

 It suggested that both growth kinetics and molecular biomarkers can be applied for assessment of environmental nanotoxicity.

•The toxicity of the QDs to *C. reinhardtii* was ca. 10-fold greater than that of TiO2 NMs, indicative of different, yet unknown toxicological mechanisms.

48 h EC50 and LC50 of NPs to Daphnia magna

High toxicity							
Material (particle size)	EC ₅₀ (mg/L)	95% CI	LC ₅₀ (mg/L)	95% CI			
ZnO/Bulk (1,000 nm)	0.48	0.30-0.67	1.25	0.99-1.85			
nZnO (20 nm)	0.62	0.41-0.81	1.51	1.12-2.11			
SWCNTs (<2nm)	1.31	0.82-1.99	2.43	1.64-3.55			
C ₆₀ (<200nm)	9.34	7.76-11.26	10.52	8.66-12.76			
MWCNTs (10-20nm)	8.72	6.28-12.13	22.75	15.68-34.39			
nTiO ₂ (< 20nm)	35.31	25.63-48.99	143.39	106.47-202.82			
nAl_2O_3 (80 nm)	114.36	111.23-191.10	162.39	124.33-214.80			
TiO ₂ /Bulk (10,000 nm)	275.28	170.66-570.05	>500	n.d.			
Al ₂ O ₃ /Bulk (90,000 nm)	>500	n.d.	>500	n.d.			
Low toxicity							

X. Zhu, L. Zhu, Y. Chen, Journal of nanoparticle research, 2009, Vol.11: 67-75

Immobilization and mortality of D. magna

X. Zhu, L. Zhu, Y. Chen, Journal of nanoparticle research, 2009, Vol.11: 67-75

Uptake and Adsorption of Daphania

The uptake and adsorption of MWCNTs by D. magna after 48 h exposure

Uptake and Adsorption of Daphania

A: nAl₂O₃(100mg/L)

B: nTiO₂ (100mg/L)

E: C60 (10 mg/L)

F: MWCNTs (10 mg/L)

H: 48 h Control

Dead D. magna

after 48-h exposure to different materials

X. Zhu, L. Zhu, Y. Chen, Journal of nanoparticle research, 2009, Vol.11: 67-75

Summery

(1) The NPs may have acute, dose-dependent ecotoxicological effects on freshwater zooplankton.

(2) NPs with different compositions exhibited different toxicities to D. magna. The nZnO suspension was observed to be the most toxic of those tested, while nAl₂O₃ had the least toxicity.

(3) New regulations should be established that are based not only on chemical components but also on size, as chemical properties change at the nanoscale.

(4) D. magna is able to ingest NPs from test solutions. Other grazing and filter-feeding aquatic organisms are likely to ingest such NPs as well. The potential for subsequent transfer of NPs to other trophic levels should receive additional attention.

X. Zhu, L. Zhu, Y. Chen, Journal of nanoparticle research, 2009, Vol.11: 67-75

Toxicity of ZnO Nanoparticle Aggregates on the Embryo Development of Zebrafish (Danio rerio)

Hatching rate (%) of zebrafish embryos exposed to different treatments over 96 h.

X. Zhu, Y. Chang, Y. Chen, Nanotechnology, in press, 2009

Toxicity of ZnO Nanoparticle Aggregates on the Embryo Development of Zebrafish (Danio rerio)

Examples of pericardial and yolk sac edemas (indicated by arrows) in zebrafish embryos and larvae exposed to nZnO aggregates

Chorion penetration property of nanoparticle

Embryos exposed to FITC- $nSiO_2$ for 20 h (24hpf)

nSiO₂ adsorbed on the surface of embryos but can not penetrate the chorion of zebrfish embryos

> Embryo's Threedimensional Image

Embryo's intermediate layer Image

Toxicity of ZnO Nanoparticle Aggregates on the Embryo Development of Zebrafish (Danio rerio)

Comparative toxicity between Zn2+ and nZnO aggregates using hatching rate as endpoint at 96 hpf.

X. Zhu, Y. Chang, Y. Chen, Nanotechnology, in press, 2009

Intracellular ROS in zebrafish embryo cells treated with Zn2+ or nZnO

X. Zhu, Y. Chang, Y. Chen, Nanotechnology, in press, 2009

ARIZONA STATE UNIVERSITY

Results of quantitative RT-PCR for the oxidant-associated genes: gstp2, Nqo1: lower expression in nZO treated embryos than those treated with Zn++.

Comparison toxicity of nZnO aggregates with and/or without sediments on zebrafish embryos at 96 hpf.

X. Zhu, Y. Chang, Y. Chen, Nanotechnology, in press, 2009

Summary

•nZnO exerts dose-dependent toxicity to zebrafish embryos and larvae, causing malformation in the cardiovascular system, and blocking hatching, leading to mortality in some embryos.

•the observed toxicity as a result of exposure to nZnO aggregates might be mediated through elevated ROS.

•Sediments in aquatic environments, however, could mitigate the toxicity of nZnO aggregates.

Toxicity to Fish– Carp Oxidative Stress and Growth Inhibition

Ticena	Diomarker	Exposure groups (mg/L)					
TISSUE	Diomarker	control	0.04	0.20	1.0		
Duoin	SOD	49.4±5.28	46.8±6.69	58.7±10.4	49.8±14.7		
	(U/mgprot)	(a)	(a)	(a)	(a)		
	CAT	4.25±1.10	4.24±0.54	6.47±1.54	4.78±1.57		
	(U/gprot)	(a)	(a)	(a)	(a)		
Diam	GSH	442.5±15.1	393.6±9.2	380.1±5.5	346.6±0.0		
	(mg/gprot)	(a)	(b)	(b)	(c)		
	LPO	4.19±0.11	3.21±0.11	2.42±0.06	2.49±0.03		
	(nmoL/mgprot)	(a)	(b)	(c)	(c)		
	SOD	188.1±9.3	215.9±4.8	207.2±4.2	208.8±4.9		
	(U/mgprot)	(a)	(b)	(b)	(b)		
	CAT	708.5±51.5	859.7±38.5	828.8±18.8	755.9±35.1		
Liver	(U/gprot)	(a)	(b)	(bc)	(ac)		
LIVEI	GSH	213.4±5.8	223.6±5.3	186.0±1.8	192.8±2.0		
	(mg/gprot)	(a)	(a)	(b)	(b)		
	LPO	3.54 ± 0.02	2.88±0.02	2.83±0.07	3.81±0.03		
	(nmoL/mgprot)	(a)	(b)	(b)	(c)		
	SOD	17.0 ± 4.9	22.6±1.2	13.7±3.7	16.9±4.8		
	(U/mgprot)	(a)	(a)	(a)	(a)		
	CAT	4.75±0.86	6.86±0.39	9.70±1.60	8.90±0.77		
Gill -	(U/gprot)	(a)	(ab)	(c)	(bc)		
	GSH	548.4±8.0	453.4±10.4	504.5±8.1	415.2±4.0		
	(mg/gprot)	(a)	(b)	(c)	(d)		
	LPO	6.50±0.05	2.46±0.02	2.28±0.05	2.49±0.05		
	(nmoL/mgprot)	(a)	(b)	(c)	(b)		

Note: Values for the control and C₆₀ aggregates exposed groups are based on 32 d exposure and expressed as mean \pm S.D. (n = 3). Different letters in the same row indicate significant differences between treatments within each tissue (ANOVA with Tukey's test, p < 0.05).

Zhu X., L. Zhu, Y. Lang, Y. Chen Environ. Toxicol. & Chem. 2008(27) 9 Apr 24:1

ARIZONA STATE UNIVERSITY

Facilitated bioaccumulation of other pollutants by TiO₂ NPs

As(III), As(V) and Cd can be adsorbed onto NPs, as TiO_2 NPs accumulate in body of carp, the adsorbed pollutants are transported to carp by TiO_2 NPs. As a result, the accumulation of and Cd were enhanced in the presence of TiO_2 NPs.

Biological Fate and Transport – Enhanced Bioaccumulation

Zhang, X., H. Sun, Z. Zhang, Q. Niu, Y. Chen, J. Crittenden Water, Air & Soil Pollution. 2007(178):245–254

Enhanced bioaccumulation of Cd in carp by TiO2 NPs and Suspended Particles

The presence of SP did not have significant influence on the accumulation of Cd in carp during the 25 d of exposure. However, the presence of TiO_2 NPs, after 25 d of exposure Cd concentration in carp increased by 146%.

Chemosphere 2007, 67:160–166.

X. Zhang, H. Sun, Y. Chen, et. al, Water, Air & Soil Pollution. 2007, 178:245–254.

X. Zhang, H. Sun, Y. Chen, et. al, Water, Air & Soil Pollution. 2007, 178:245–254.

X. Zhang, H. Sun, Y. Chen, et. al, Water, Air & Soil Pollution. 2007, 178:245–254.

STATE UNIVERSITY

Bioconcentration of nanoparticles in aquatic organisms

Uptake and depuration of nTiO2 in Daphnia magna

Uptake of nTiO2 by daphnia

TiO₂ particles

Immobilized

Ex means Exposure; Dep means Depuration

$$\frac{1}{C} = \left(\frac{K_{\rm M}}{C_{\rm sat}}\right)\frac{1}{t} + \left(\frac{1}{C_{\rm sat}}\right)$$

Uptake and depuration rate constants and bioconcentration factors (BCFs) for nTiO₂ in Daphnia magna

Dose	Exact dose ^a	Whole body	BCFs	$K_{\rm M} = t_{\rm u0.5}$	<i>t</i> _{u0.9}	$t_{\rm d0.5}$ (1)
(mg/L)	(mg/L)	concentration(dw)(g/kg) (l/kg)	(h)	(h)	(h)
0.10	0.08	4.52 ^b	56562.50	3.87	34.84	2 <mark>6.76 88.90</mark>
1.0	0.517	61.09	118062.84	3.72	33.51	74. <mark>52 2</mark> 47.59

a Exact concentration of $nTiO_2$ in culture medium after exposure for 24 hours. b Average of the concentrations at 12 and 24 hours.

Biomagnification factor (BMF) = 0.0259. Thus, it can be speculated that there is **no biomagnification of nTiO**₂ from Daphnia to zebrafish.

Uptake and depuration of nTiO2 in Zebrafish : waterborne

BCF = 25.38

BCF = 181.38

Uptake and depuration of nTiO2 in Zebrafish : dietary-borne

no biomagnification of nTiO₂ from Daphnia to zebrafish.

Uptake, depuration rate constants, bioconcentration factors (BCFs), and biomagnifications factors (BMFs) in Danio rerio

<i>t</i> _{d0.5}
(d)
5.69
1.92
5.

^a Exact dose in culture medium: 24 h time weight exposure concentrations.

^b Exact dose in Daphnia: b0.1- after exposure to 0.1 mg/L nTiO2 for 24 h; b1.0- after exposure to 1.0 mg/L nTiO2 for 24 h.

^c Concentrations at steady state conditions.

^d BMFs at steady state conditions.

nTiO2 accumulation profile comparison between Daphnia and Zebrafish

Test	nTiO ₂ 0.1 mg/L			nTiO ₂ 1.0 mg/L			
organism	<i>t</i> _{u0.5}	<i>t</i> _{d0.5}	BCFs	t _{u0.5}	<i>t</i> _{d0.5}	BCFs	
Daphnia	3.87 h <	26.76 h	56562.50	3.72 h <	74.52 h	118062.84	
zebrafish	1.42 d <	5. 69 d	25.38	16.75 d	1.92 d	181.38	

Future works

- Determine the other NPs (such as C₆₀ NPs) bioconcentration and bioaccumulation in aquatic organisms.
- Determine the distribution (or fate) of NPs in different parts of exposure system, including water, organism body and the excretion, based on the mass balance profile or used a stable isotopic tracer approach.
- Determine the influence of NPs physicochemical properties (such as particle size, shape) and the environmental factor (such as food, salinity and illumination) on the bioaccumulation behavior of NPs.
- Determine the bioaccumulation behavior of NPs under different exposure conditions, such as static, semi-static and flow-through system.

Acknowledgements

 People from my group: Wen Zhang, Ph.D. Student
Dr. Yang Zhang, Ph.D. student (graduated)
Dr. Xiaoshan Zhu, Post-docs
r. Xuezhi Zhang, Post-docs
Dr. Jiangxin Wang, Post-docs

2) Collaborators:

Prof. Yung Chang; Prof. Qiang Hu Biodesign, School of Life Science

Prof. Hongwen Sun; Prof. Lin Zhu Nankai University

