Introduction Experimental Setup Model Development 00000 Result and Discussion Summary Future Work Acknowledgments

Physicochemical and Surface Characteristics Study of Nanoparticles related to ESH Impact of Emerging Nanoparticles and Byproduct in Semiconductor Manufacturing

Hao Wang

Chemical and Environmental Engineering University of Arizona

November, 2 0 1 0

- Investigation of nanoparticles has indicated that nanoparticles with high specific surface area, reactive surfaces, and absorptive surfaces, will easily absorb other toxic chemicals.
- Surface characteristics of different nanoparticles, such as SiO₂, HfO₂, and CeO₂, have been studied by moisture adsorption and desorption. The result shows species effect and size effect on moisture retention.
- A multilayer transient adsorption and desorption model has been applied to study the surface characteristics of different nanoparticles.

Model Developm

Result and Discussion Summary Future Work Acknowledgments

Experimental Setup

Figure: Schematic of FTIR experimental setup

Model Developme

esult and Discussion Summary Future Work

Work Acknowledgments

Mechanism of adsorption and desorption

Figure: Schematic of sample holder coupon

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

4

Mechanism of adsorption and desorption

The adsorption and desorption rate:

$$r_a = k_a(S_0 - C_s)C_g$$

$$r_d = k_dC_s$$

- k_a adsorption rate coefficient
- k_d desorption rate coefficient
- *C_g* moisture concentration in the gas phase

- *C_s* moisture concentration on the surface
- *S*⁰ total concentration of available sites of all the available layers under certain challenge concentration

Mechanism of adsorption and desorption

The rate coefficients:

$$k_a = k_{a_0} \exp(\frac{-E_a}{RT})$$

$$k_d = k_{d_0} \exp(\frac{-E_d}{RT})$$

- k_{a_0} adsorption prefactor
- k_{d_0} desorption prefactor
- E_a total adsorption energy

- E_d total desorption energy
 - R gas constant
 - T temperature

Mechanism of adsorption and desorption

Total adsorption and desorption energy:

$$E_{a} = E_{a_{1}} \frac{C_{s_{0}} - C_{s}}{C_{s_{0}}} + E_{a_{2}} \frac{C_{s}}{C_{s_{0}}}$$
$$E_{d} = E_{d_{1}} \frac{C_{s_{0}} - C_{s}}{C_{s_{0}}} + E_{d_{2}} \frac{C_{s}}{C_{s_{0}}}$$

- E_{a_1} total chemical adsorption energy E_{a_2} total physical adsorption energy
- E_{d_1} total chemical desorption energy
- E_{d_2} total physical desorption energy

Governing Equations

Moisture concentration in gas phase:

$$\frac{\partial C_g}{\partial t} = D_e \frac{\partial^2 C_g}{\partial x^2} + (1 - \epsilon) \frac{3}{r} [k_d C_s - k_a C_g (S_0 - C_s)]$$

Moisture concentration on the surface:

$$\frac{\partial C_s}{\partial t} = [k_a C_g (S_0 - C_s) - k_d C_s]$$

D_e effective diffusivity

 $\epsilon~$ porosity of coupon

r radius of nanoparticle

t time

Introduction Experimental Setup Model Development Result and Discussion Summary Future Work Acknowledg

Experimental Data

Figure: Moisture absorbance peak on SiO₂ (20nm)

Model Developme

Result and Discussion Summary Future Work Acknowledgment:

Experimental Data

Figure: Spectrum of SiO₂ changes with time during the purge phase

Model Developme

Result and Discussion Summary Future Work Acknowledgments

Model verification

Figure: Model simulation and experimental data for SiO₂ (20nm)

Introduction Experimental Setup Model Development 0000 Personal Summary Future Work Acknowledgments

Model verification

Figure: Model simulation and experimental data for CeO₂ (20nm)

Introduction Experimental Setup Model Development Result and Discussion Summary Future Work Acknowledgmen

Model verification

Figure: Model simulation and experimental data for HfO₂ (20nm)

Introduction Experimental Setup Model Development Result and Discussion Summary Future Work Acknowledgments

Model verification

Figure: Model simulation and experimental data for HfO₂ (100nm)

Model Developn

Result and Discussion Summary Future Work Acknowledge

Affinity for water molecules

Figure: Moisture retention percentage of different nanoparticle species with the same size

Model Developn

Result and Discussion Summary Future Work Acknowledgr

Affinity for water molecules

Figure: Moisture retention percentage of the same nanoparticle species with different sizes

Parametric study

Table: Saturated surface concentration and total surface available sites for different NPs

Sample	Surface available sites	Saturated surface concentration	Surface available site coverage
20nm	S ₀ (mol/m ²)	C_{s_0} (mol/m ²)	$\theta(\%)$
SiO ₂	7.1×10^{-6}	2.8×10^{-6}	39
CeO ₂	5.5×10^{-7}	5.4×10^{-7}	98
HfO ₂	1.5×10^{-6}	1.1×10^{-6}	73

Table: Parameters of adsorption and desorption coefficient functions for different NPs

Sample (20nm)	k _{a0} (m²/mole/s)	k _{d0} (/s)	E_{a_1} (J/mol)	E_{a_2} (J/mol)	E _{d1} (J/mol)	E_{d_2} (J/mol)
SiO ₂	0.028	0.003	4500	4000	6000	3000
CeO ₂	0.800	0.005	1200	1000	9000	2000
HfO ₂	0.200	0.010	800	300	12000	1000

Parametric study

Table: Saturated surface concentration and total surface available sites for different sizes of NPs

Sample	Surface available sites	Saturated surface concentration	Surface available site coverage	
	S ₀ (mol/m ²)	C _{s0} (mol/m ²)	$\theta(\%)$	
HfO ₂ (20nm)	1.5×10^{-6}	1.1×10^{-6}	73	
HfO ₂ (100nm)	8.7×10^{-7}	7.3×10^{-7}	84	

Table: Parameters of adsorption and desorption coefficient functions for different sizes of NPs

Sample	k _{a0} (m²/mole/s)	k _{d0} (/s)	E_{a_1} (J/mol)	$E_{a_2}(J/mol)$	E _{d1} (J/mol)	E_{d_2} (J/mol)
HfO ₂ (20nm)	0.20	0.010	800	300	12000	1000
HfO ₂ (100nm)	1.29	0.035	600	400	6000	1200

- Surface characteristics study of nanoparticles has species effect and size effect.
- The affinity of nanoparticles for H₂O retention decreases in the order: CeO₂ > HfO₂ > SiO₂. The surface available sites under certain concentration decreases in the order: SiO₂ > HfO₂ > CeO₂.
- Nanoparticles with smaller size will have larger surface available sites and larger saturated surface concentration under certain challenge concentration. They also have higher affinity for moisture retention.

Introduction Experimental Setup Model Development Result and Discussion Summary Future Work Acknowledgments

Future Work

- Study the temperature effect on moisture adsorption and desorption
- Improve the transient adsorption and desorption model to calculate number of layers in each time step
- Introduce a distribution function to indicate the moisture distribution on the surface

Introduction Experimental Setup Model Development 00000 Result and Discussion Summary Future Work Acknowledgments

Acknowledgments

- Farhang Shadman, Regents' Professor, Dept. of Chemical & Environmental Engineering, University of Arizona.
- Reyes Sierra, Associate Professor, Dept. Chemical & Environmental Engineering, University of Arizona.
- SRC/SEMATECH Engineering Research Center

Introduction Experimental Setup Model Development Occose Summary Future Work Acknowledgments

Thank you!