Oxidation of a ROS-indicator Dye by Inorganic Nanoparticles

Antonia Luna-Velasco, Reyes Sierra-Alvarez, Jim A. Field

Dept. Chemical & Environmental Engineering The University of Arizona E-mail: aluna@email.arizona.edu

Nanoparticles

Nanoparticles (NPs):

Nano-sized materials (1-100 nm)

LARTA newsletter, June 24,2002

1D- Nanotubes

2D- Nanowalls

Nanoparticles in the Environment

Properties & Applications

Environmental Health & Safety Concerns

List of NPs for Testing Organization for Economic Cooperation and Development

Organization for Economic Cooperation and Development (OECD)

FullerenesTiO2Carbon nanotubesSiO2SilverAl2O3IronCeO2CarbonZnO

Polystyrene Dendrimers Nanoclays

Toxicity of Nanoparticles

¹Daphnia magna: A) C₆₀ & B) TiO₂ NPs intake & translocation.

Not exposed

²Zebrafish embryos exposed to Ag NPs depositionDeformation & apoptosis

³Lung epithelial cells (BEAS-2B)

exposed to CeO_2

Uptake Oxidative stress

Toxicity Mechanisms

Toxicity by ROS

Oxidative damage

Objectives

- Determine if the chemical reaction of NPs with dissolved oxygen together with biological molecules can cause increased formation of ROS.
- Determine if NPs can directly from ROS with dissolved oxygen or directly oxidize ROS-indicator dye in the absence of dissolved oxygen.
- Confirm and identify the ROS species formed by the NPs studied.
- Determine if the NPs studied can cause oxidation of the protein BSA.

Materials

Hafnium oxide (HfO₂)

 \rightarrow

 \rightarrow

HfO₂

Cerium oxide (CeO₂) Silicon oxide (SiO₂) Aluminum oxide (Al_2O_3)

Immersion Lithography

CCD camera cantilever with lens mount x-table with vacuum chuck illumination

Chemical Mechanical Planarization (CMP)

Fe₂O₃, ZrO₂, ZnO, Mn₂O₃, etc.

 Mn_2O_3

10

ROS Indicator-Dye Reaction

ROS Assay

Sonicated pH 7.2

NPs

Aerobic L-dopa or catechol +NPs Anaerobic nonfluorescent Head space **ROS-dye** flushed with N₂ gas

Fluorescence Measurements

Controls: NPs alone Dye alone L-dopa alone

Incubated in phosphate buffer pH 7.4 at 37 °C, Protected from the light.

Hypothetical Mechanisms for ROS Reaction

Formation of ROS by NPs in the cell-free assays

- Interaction of phenolic biomolecules with NPs increases ROS formation
- ROS formation requires oxygen

ROS Formation: CeO₂ NPs (20 nm)

CeO₂ NPs increased ROS production during oxidation of L-dopa & catechol with dissolved oxygen.

ROS Indicator-Dye Oxidation by Inorganic NPs

 CeO_2 , SiO_2 , Al_2O_3 ZnO & Fe_2O_3 increased ROS production rate during the oxidation of L-dopa.

Direct reaction of Mn_2O_3 and Fe^0 NPs with either ROS-dye or with dissolved Oxygen to produce ROS.

ROS Indicator-Dye Oxidation by Mn₂O₃ NPs (40-60 nm)

Aerobic vs Anaerobic ROS Indicator-Dye Oxidation by Inorganic NPs

Mn₂O₃ NPs directly oxidizes ROS indicator-dye, dissolved oxygen not required.

CeO₂ NPs produce ROS trough the oxidation of L-dopa in the presence of dissolved oxygen

Size Effect on ROS Formation: CeO₂ & Fe⁰

Dose-Response: Mn₂O₃ & CeO₂ NPs

Mn₂O₃ effectively oxidizes ROS-dye at low concentrations.

Low mass of CeO₂ NPs did not produce significant ROS

Conclusions

- The interaction of CeO₂ NPs with biological molecules (L-dopa & catechol) increased the oxidation of the ROS indicator-dye.
- Inorganic NPs used in semiconductor industry (CeO₂, SiO_2 , Al_2O_3) enhanced the oxidation of the ROS indicator-dye through its reaction with L-dopa and dissolved oxygen.
- Mn₂O₃ NPs caused direct oxidative reaction with the fluorescent dye (DCF), suggesting that the Mn oxide could potentially react with some cell components.

Conclusions

- The lack of oxygen totally inhibited the oxidation of the ROS indicator-dye by all NPs assayed (via oxidation of L-dopa), except in the case of Mn₂O₃ NPs.
- The enhancement of ROS formation by nano-sized CeO_2 and Fe^0 showed a direct correlation with the particle size.

Ongoing Work: Identification of ROS Produced by NPs

Inhibiting Oxidation of the ROS-indicator Dye

Scavengers/ Quenchers	ROS	ROS inhibition (%)
SOD & Catalase	Superoxide & H ₂ O ₂	0
DMSO	Oxygen radicals	0
NaN ₃	Singlet oxygen	0
*Ascorbic Acid	Antioxidant	100

*not specific

Ongoing Work: Identification of ROS Produced by NPs

Electron Paramagnetic Resonance (EPR)

Based on the resonant absorption of microwave radiation by paramagnetic ions or molecules, with at least one unpaired electron spin, and in the presence of a static magnetic field.

Ongoing Work: Identification of ROS Produced by NPs

"*" denote lines of the DMPO+OH spin adduct.

CeO_2 and Mn_2O_3 produce OH' radicals in water

Future Work: Oxidation of Proteins by NPs

In vitro test

✤ BSA protein

NPs

Incubation

Oxyblot test:

Sensitive and rapid detection of proteins (in a western blot format) modified by ROS and other reactive species.

ELISA (Protein carbonyl kit): Rapid detection and quantification of protein carbonyls.

SRC/Sematech

Engineering Research Center for Environmentally Benign Semiconductor Manufacturing (ERC).

Mexican National Science & Technology foundation (CONACyT).

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

