

Green Processing in Photolithography

ERC TeleSeminar March 25th, 2010

Christine Y. Ouyang

Department of Materials Science and Engineering

Cornell University

Outline

- Introduction
 - -Lithographic Process
 - -Environmental Issues
- Approaches
 - -Environmentally Benign Developing Solvents
 - -Photoresists
 - -Sugar-Based "Sweet" PAG
- Conclusions

Lithographic Process

Environmental Issues

E.D. Williams, R.U. Ayres, M. Heller, Environ. Sci. Technol. 2002, 36, 5504-5510

- •Use of Toxic chemicals
- -potential impacts of emissions on air, water, and ground systems
- Water consumption
- -2-3 millions gallons of water per day for a typical 6-inch wafer plant

Below critical point – separate liquid and gas phases

Near critical point – meniscus begins to fade

A. I. Cooper, J. Mater. Chem. 2000, 10, 207-234.

Above critical point – no meniscus, homogeneous phase

R. S. Oakes, A. A. Clifford and C. M. Rayner, J. Chem. Soc., Perkin Trans. 1 2001, 917

- •Supercritical state of carbon dioxide
- $-T_{c} = 31.1 \text{ °C}, P_{c} = 72.8 \text{ bar}$
- •Non-toxic
- •Environmentally benign
- Pressure adjustible solvating power
- Low viscosity
- Zero surface tension

Existing "Green" Lithographic Process Using scoop

- Substrate cleaning
- -Solubility of non-polar organic compounds is high in scCO₂
- -Leave no organic residues
- Thin film deposition
- Resist stripping
- Etching
- Drying

-Prevent pattern collapse

G.L. Weibel, C.K. Ober, *Microelectronic Engineering* **2003,**65, 145-152

Molecular Glass Resists-Calix[4]resorcinarene Derivatives

- High Tg
- High Thermal stability
- Excellent film forming characteristics
- Ability to tune chemical structure through minor synthetic modifications
- Uniform dissolution rates leads to sharp solubility contrast and lower roughness

N.M. Felix, A. De Silva, C.K. Ober, Adv. Mater. 2008, 20, 1303-1309

Lithographic Results of Calix[4]resorcinarene Derivatives

N.M. Felix, A. De Silva, C.K. Ober, *Adv. Mater.* **2008**, 20, 1303-1309

"Noria-Boc" Molecular Glass Resists

High molecular weight molecular glass $M_{w \text{ Noria-boc}} = 4108.3 \text{ g/mol}$ $M_{w \text{ Noria}} = 1705.9 \text{ g/mol}$

M.Tanaka, A. Rastogi, H. Kudo, D.Watanabe, T.Nishikubo, C. K. Ober, *J. Mater. Chem.* **2009**, 19, 4622 -4626

E-beam Dose: 107 uC/cm²(top), 77uC/ cm²(bottom) PEB:120°C scCO₂: 50°C, 5000 psi, 30 min

Co-solvents

- Addition of acetone as a co-solvent
- Non-fluorine polymer was dissolved in $scCO_2$.
- Increase solvent density
- Tune polarity of fluid

C. K. Ober, K. K. Gleason, et al., JVST B. 2004, 22, 2473-8.

scCO₂ Compatible Salts

Micell Integrated Systems developed a new additive for scCO₂.

$(R)_a(R')_b N^+X^-$

where a + b = 4, and R' is a partially fluorinated alkyl or aryl group, and Xis the counter anion

M. Wagner, et al., *Proc. of SPIE* **2006**, 6153, 615311, *Proc. of SPIE* **2006**, 6153, 615345, *Proc. of SPIE* **2006**, 6153, 615346, *Proc. of SPIE* **2006**, 6153, 61533W, *Proc. of SPIE* **2007**, 6519, 651948.

Conventional photoresists are not soluble in scCO₂ before or after exposure
Could interact with QAS and become soluble
Negative-tone images with sub-100 nm features

M. Tanaka, A. Rastogi, G. N. Toepperwein, R. A. Riggleman, N. M. Felix, J. J. de Pablo and C. K. Ober, *Chem. Mater* **2009**, 21, 3125-3135

Ossolution of Conventional Photoresists/QAS in second

QAS	Resist	Unexposed	Exposed	note
CH ₃ COO ^{\ominus} $(CH_2)_3 - (CF_2)_5 - CF_3$ $(CF_2)_3$ $(CF_2)_5$ CF_3 QAS-4 (1.25 mM)	PBOCST	Dissolution (40 nm/min)	Slow dissolution (1-4 nm/min)	Negative tone resist
	ESCAP (Du Pont)	Dissolution (25 nm/min)	No dissolution	Negative tone resist
	PMAMA-co- GBLMA (Mitsubishi Rayon)	No dissolution	No dissolution	
	EUV-P568 (TOK)	Dissolution (15 nm/min)	Slow dissolution (1-2 nm/min)	Negative tone resist
CF ₃ CF ₂ COO ^{\ominus} $(CH_2)_3 - (CF_2)_5 - CF_3$ $(CH_2)_3$ $(CF_2)_5$ CF_3 QAS-7 (1.25 mM)	PBOCST	No dissolution	No dissolution	
	ESCAP (Du Pont)	No dissolution	No dissolution	
	PMAMA-co- GBLMA (Mitsubishi Rayon)	No dissolution	No dissolution	
	EUV-P568 (TOK)	Dissolution (45 nm/min)	Slow dissolution (<1 nm/min)	Negative tone resist

14

Dose: 107 uC/cm², QAS-4 (1.25 mM), dev. for 60 min at 50°C, 5000 psi, flow 30 min

Development test of EB-patterned TOK resist (EUV-P568) with QAS-4 or QAS-7

Dose: 20 uC/cm², QAS-7 (1.25 mM), dev. for 60 min at 50°C, 5000 psi, flow 30 min

"Green" Solvent-Silicone Fluids

- Linear Methyl Siloxanes
- Low molecular weight
- Contain only silicon, carbon, hydrogen, and oxygen
- Non-polar solvent
- Solvent power can be enhanced by adding additives
- Low in toxicity, VOC exempt
- Non-ozone depleting
- Degrade to naturally occurring compounds
- Low surface tension

Hexamethyldisiloxane

octamethyltrisiloxane

decamethyltetrasiloxane

HMDSO

OMTSO

16

• Precision water removal-Immiscible fluid water displacement drying

V— Non-Aqueous Surfactant

ESCAP

(N,N-Dimethyl)trimethyl silane

DMTS

Structure modifier to incorporate trimethylsilyl(TMS) group

soluble in silicone fluids

Photoresist:ESCAP Chemical modifier: DMTS Solvent: Decamethyltetrasiloxane E-beam dose = 24μ C/cm² PEB: 115 °C, 60 sec Photoresist:ESCAP Chemical modifier: DMTS Solvent: Octamethyltrisiloxane Dose = 50mJ/cm² PEB: 115 °C, 60 sec

soluble in silicone-fluids

Photoresist:PBOCST Chemical modifier: DMTS Solvent:Octamethydisiloxane E-beam dose = 150µC/cm² PEB: 90 °C, 60 sec

Photoresist:PBOCST Chemical modifier: DMTS Solvent: Hexamethyldisiloxane Dose = 550 mJ/cm² PEB: 90 °C, 60 sec

Molecular Glass Resists-Calixarene

- •Potential to produce high-resolution patterns •Ring structure imparts high Tg
- •Soluble in silicone fluids and scCO₂ without any additives
- •Negative-tone images
- •Computer simulation done by the de Pablo group at UW-Madison

Calixarene Develoed in Silicone Fluids

Negative-tone

<u> </u>	1.5
	1.3
	1.2
	1.1
 	1.0
	.90
	.80
24	. 60

OMTSO Dose:250 mJ/cm² PEB:90°C, 30 sec HMDSO Dose:350 mJ/cm² PEB:90°C, 30 sec

.80
DMTSO
Dose:300 mJ/cm ²
PEB:90°C, 30 sec

5

90

E-beam Patterned Calixarene

 $scCO_2$

E-beam dose = 112μ C/cm² PEB: 90 °C, 60 sec 2000 psi,40 °C, 5 min Silicone Fluids

E-beam dose = 96µC/cm² PEB: 90 °C, 60 sec Solvent:OMTS

Approaches

ĊНз

tBOC-protected tert-butyl cholate

Tg = $\sim 100 \, ^{\circ}\text{C}$

*t*BOC-protected methylated β -cyclodextrin Tg = ~125 °C

CH₃

Ò-CH3

R = H or

CH3

- Cholic acid cores are etch-resistant and have strong intermolecular interactions which can contribute to the relatively high glass transition temperatures of cholates.
- Cyclodextrins are good hosts for inclusion complexes.

tBoc-protected tert-butyl cholate

*t*Boc-protected methylated β-CD

J. Sha, J.-K. Lee, C. K. Ober, Proc. of SPIE 2009, 7273, 72732T

Cyclodextrin - Carborane Inclusion Complex

· STANFO

M. Krysak, A. De Silva, J. Sha, J.-K. Lee, C. K. Ober, Proc. of SPIE 2009, 7273, 72732N

Approaches

PFOS-Based PAG

• PFOS(C₈F₁₇SO₃⁻)-based PAGs

-high quantum yield for acid generation

-excellent resist miscibility

- -good thermal and storage stability in resist films
- -suitable diffusion length
- Perfluoroalkanesulfonate (PFAS) groups with more than four CF₂ are environmental hazards
- -bioaccumulation
- -toxic

PFOS Problems

Global Distribution of PFOS in Wildlife

Accumulation of PFOS in Marine Mammals

Environ. Sci. Technol. 2001, 35, 1339.

Environ. Sci. Technol. 2001, 35, 1593.

PFOS-Free PAG

- Sulfonate as acid head groupPerfluorinated unit to enhance acid strength
- •Spacer to link tail and core
- •Tail group may be used to vary acid strength, size , miscibility, and transparency

R.Ayothi, Y. Yi, H. B. Cao, W. Yueh, S. Putna, C. K. Ober, *Chem. Mater.* 2007, 19, 1434-1444

E-beam Patterns Using PFOS-Free PAG

R.Ayothi, Y. Yi, H. B. Cao, W. Yueh, S. Putna, C. K. Ober, *Chem. Mater.* 2007, 19, 1434-1444

Environmental Compatibility of New PFOS-Free PAG Anions

- 1st Generation Non-PFOS PAGs: Low toxicity and low bioaccumulation potential but relatively persistent to microbial degradation.
- 2nd Generation Non-PFOS PAGs: Preliminary results show that replacing the phenyl group with a UV-transparent alicyclic moiety increases the susceptibility of the PAG compound to biodegradation.
- 3rd Generation Non-PFOS PAGs: Replacing with sugar and natural groups is expected to increase biodegradation.

Lactone

Sweet PAG (Sweet)

Compounds	Degradation	PAG Removed (%)	Fluoride Released (%)
Lactone PAG	YES	100	5.7
Sweet PAG	YES	100	8.7
PFOS	NO	0.8	0.6
PFBS	NO	0.5	0.4

Fenton's reaction: $Fe^{2+} + H_2O_2 --> Fe^{3+} + OH + OH^ Fe^{3+} + H_2O_2 --> Fe^{2+} + OOH + H^+$ PAG + radicals → Oxidized products Non-PFOS PAG compounds were effectively degraded by advanced oxidation using the Fenton's reaction
Perfluorinated PAGs such as PFOS and PFBS were resistant to attack.

Sugar-Based "Sweet" PAG

• Linear type

• PAG Based on steroids and their analogs

Conclusions

- We have demonstrated the use of two environmentally benign solvents to develop conventional photoresists and molecular glass resists
- Both scCO₂ and silicone fluids have the potential to eliminate pattern collapse because of their low surface tension
- Sugar-based "Sweet" PAGs present significant ESH advantages compared to PFOS-based PAGs

Acknowledgements

- Ober group
- de Pablo Group at University of Wisconsin
- SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- Cornell Center for Materials Research(CCMR)
- Cornell NanoScale Science and Technology Facility(CNF)

