Winning the Global Race for Solar Silicon: The Sequel

David Lynch

Chief Technical Officer, Solar Technology Research Corporation, Tucson, AZ

Professor of both Mining Engineering & Materials Science & Engineering, University of Arizona dclynch@email.arizona.edu

PV Market History

- Prior to 1996 market driven by demand
- 1996/97 market limited by supply, price of off-spec
 Siemens Si triples to \$75 per kg.
- 1998 to 2004 market driven by demand
- 2004 to 2009 market limited by supply, price of Siemens Si rises to \$450 per kg during summer of 2008.
- 2006 more Siemens Si used to produce PVs than electronic devices
- 2009 to 2013 market projected to be driven by demand
- Beyond 2013 market expected to be limited by supply, eventually transitioning to being resource limited

Material	Element	Reserve Base (ktonnes)	TWy
Poly- crystalline Silicon	Ag contact	570	2.3
CdTe	Те	48	0.02
CIGS	In	16	0.04

Feltrin and Freundlich stated "that many existing technologies, albeit playing an important [role] in the present sub-GW energy production levels, are affected by severe material shortages, preventing their scale-up to the terawatt range" Renewable Energy, 33 (2), 2008, pp. 180-185.

Why Silicon?

Projected Shortfall in Electrical Energy for the World

2030 1.4 TWy

2050 4.0 TWy

Hubbert Plots – World's oil production expected to peak between 2010-2016

Linkage

- Resource Availability:
 Primary & Secondary
- Competition/Substitution
- Distribution/Geo-political
- Environmental
- Life Expectancy
- Disposal/Recycle

3

Three Routes to Producing a Low Cost Solar Silicon

• Siemens Like Processes (REC)

• Upgrading of Metallurgical Silicon (Elkem Solar, Dow Corning, Timminco, Solar Value, Nippon Steel, JFE, & STRC, ...)

• Direct route to Solar Silicon (FESIL & STRC)

Experiments done by major PV cell manufacturers have revealed shortcomings in the quality of ugm-Si from some vendors. Solar cells made with ugm-Si have in some cases experienced efficiency losses up to 30% within the first year after installation

Source: Lars Podlowski, CTO, SOLON, Private Communication, September 15, 2009

What PV Producers Want

P-type s-Si

Molar ratio of

B : P > 3

Mass ratio of

B : P >1.05

- Guaranteed, uninterrupted supply
- Consistent quality of s-Si requiring little or no manufacturing deviations,

Desired B and P Content in p-Type s-Si

Boron

(ppmw)

1.909

0.418

0.102

0.032

0.009

Number

Density

 $(\#/cm^3)$

2.48E+17

5.42E+16

1.32E+16

4.12E+15

1.21E+15

• Low price

Resistivity

(ohm-cm)

0.1

0.3

1

3

10

acceptable

Maximum

Phosphorus

(ppmw)

1.821

0.398

0.097

0.030

0.009

STRC Technology: Slagging Chemistry

Based on

- phase diagrams
- thermodynamic calculations
- ionic structure of slad

The Si-Al-N-O phase diagram at 1750 °C.

MgO significantly lowers fusion temperature of the liquid phase.

STRC's Technical Approach

- Focus changed from B to P based on competitors' problems.
- With success in removing P from silicon, company now seeks to improve ability to remove both B and P.

• Looking to incorporate slagging chemistry with direct process, or confine refining to STRC's Modified Silgrain Process after reduction of silica.

STRC's Technical Progress

- created superior slag for removal of P from molten silicon
- produced fluid refining slag at the fusion temperature of Si (impacts thermodynamics, refining time, and energy cost)
- developed low temperature & low cost route to form nitrides
- developed STRC's Modified Silgrain Process for removal of P from silicon
- located deposits of silica with very low B and P content

Slagging Chemistry: Boron

Silgrain

In STRC's Silgrain experiments 90% reduction in P was achieved. Further refinement of the process is expected to significantly reduce the overall extent of alloy additions.

Key Points

- Alloy composition
- Water soluble salt
- Thermodynamics of phosphides vs silicides
- Stoichiometry

"Simultaneously there was obtained a reduction of the phosphorus content of up to 90%." G. Halvorsen, "Method for Production of Pure Silicon," US patent 4,539,194 (3 Sept. 1985).

The Value of Quartz Sand after Processing

	Value Density of	
Product	Quartz Sand *	
	(\$/m³)	
Silica Sand	42	Martin Control of State
Metallurgical Silicon	1,455 **	
Solar Silicon	20,400 to 34,000 ^	
• Bulk density of sand 1,8	820 kg/m ³	

** 95% recovery of Si, valued at \$1.80 per kg.

^ 80% recovery of Si, valued at \$30 to \$50 per kg.

STRC Looks to Integrate Upstream

STRC has found that the highest purity silica has acceptable B content, but 2 to 10 times too much P.

Table II - Concentration of B and P in silica from select suppliers and locations.				
Source	В	Р		
	(ppmw)	(ppmw)		
Comme	ercial Suppl	liers		
Alfa Aesar	247	29		
Sigma (sand)	77	29		
U.S. Silica	22	228		
ΙΟ	1	16		
Ore Deposits				
A1 (rock)	0.8	0.9		
A2 (rock)	0.4	0.3		
B1 (sand)	<0.05	<0.5		
C1 (sand)	<0.05	26		
D1 (sand)	<0.05	<0.5		
E1 (sand)	0.8	1.6		
F1 (sand)	0.5	0.9		
F2 (sand)	0.3	21.3		

Starting Data for Mass Bala	ances that Follow	/S		Solar Techno STR Research Corpor
 Initial B and P content in s B & P content of silica after B & P content in silicon the ppmw, P <1 to 1.4 ppmw Single batch slagging with STRC's Modified Silgrain 	ilica: B <0.05 to 0 er Hydromet. Treat rough reduction of initial concentration Process reduces F	5 ppmw, P <0.5 to 0.8 p ment: B <0.05 to 0.5 ppn silica with high purity rec on of 0.44 ppmw B and 1 P content by 90%	opmw nw, P <0.5 to 0. ducing agents: B .4 ppmw P in the	7 ppmw <0.1 to 1 e slag
Processing Approaches for s-Si (see Table IV for additional processing details for A through D)	B Content in Si (ppmw), max target 0.42 ppmw	P Content in Si prior to UDS (ppmw)	Concentration of P at 1% & 80% Solidification after Single UDS (ppmw), max allowable P 0.40 ppmw	
			1%	80%
A - Slagging and STRC's	<0.28 to 0.76	<0.075 to	<0.026	<0.064
Silgrain		0.087	0.030	0.074
B - STRC's Silgrain Only	<0.10 to 1.0	<0.1 0 to	<0.035	<0.085
с ,		0.14	0.049	0.12
C - Slagging and STRC's	<0.33 to 0.70	<0.067 to	<0.023	<0.057
Silgrain		0.074	0.026	0.063
D - STRC's Silorain Onlv	<0.10 to 1.0	<0.08 to	<0.028	<0.068
		0.11	0.038	0.094

STRC's Direct Process: 10 Year Financial Projections

Annual production of s-Si ramps to 11,400 tonnes over 8 years. 10 year non-production cost, \$162,195,000 (84% in plant construction) 10 year production cost, \$698,020,000 @ \$13.60 per kg

Sales Price (comments)	\$20/kg	\$30/kg (undercuts production cost of Siemens-Si)	\$40/kg (inferior 5N Si sold during shortage)	\$50/kg (current sale price for 6N Si)
Production (tonnes)	51,325	51,325	51,325	51,325
Sales Value <mark>\$(000)</mark>	1,026,500	1,539,750	2,053,000	2,566,250
EBITA \$(000)	166,285	679,535	1,192,785	1,706,035

Conclusions

STRC believes that by integrating up stream to include reduction of high purity silica it can satisfy the 3 main requirements PV producers want in solar silicon, namely;

- Guaranteed, uninterrupted supply
- Consistent quality of s-Si requiring little or no manufacturing deviations,
- Low price

The latter can best be achieved by including SiC from kerf waste (from wire sawing of silicon ingots) in processing high purity silica.

