

Accelerating the next technology revolution

Wet Processing Techniques for Achieving Ultra-shallow Junctions in Future CMOS Devices

Copyright ©2010

Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing Initiative, and ISMI are servicemarks of SEMATECH, Inc. SEMATECH, and the SEMATECH logo are registered servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

 CMOS Scaling Trends and Associated Junctions Challenges

- Challenges, Opportunities and Results for Ultra Shallow Junctions using Monolayer Doping (MLD)
 - Si
 - III-V
- Summary

How Is the Industry Changing? Consumers Demand Low Power with High Performance , Mobile Devices

MOSFET Scaling Trends & Junctions Challenges Novel Materials and Architectures SEMATECH New Mat'l/Structure 2015-2019 High-K Si-Ge Device **III-V** Device MG SEMATECH ZrO₂/TiN/TaN gate stack 45nm 16nm (?) 32nm 22nm TaN/ SEMATECH **HfSiOx** 2013 2007 2009 2011 PMOS planar PFET SiGe Si Sub 50 nm 100 nm SEMATECH (Production) (Production) (Development) 6nm Length Intel IEDM 2007 Intel IEDM 2009 **IBM. IEDM 2009** T-FET (Research) B. Doris IEDM 2002 20 nr Non-planar Nano-wire Si SEMATECH SiGe FinFET/trigate/Nanowire SEMATECH SEMATECH SEMATECH Need Ultra Shallow and Low Rs Need Defect-Free Ultra **Need Conformal** Junctions, Control of Short Shallow and Low Rs Junctions Doping and Low R_{sh} **Channel effects** SEMATECH **Joel Barnett** 07-October-2010 5

III-V: Enabling High Performance <u>AND</u> Low Power

Rs-Xj Benchmark

• MPU/ASIC target is 10 nm (2010) and 9 nm (2012).

- Extension junction depth target is challenging with implant/anneal techniques.
- Must minimize damage to extension
 - Impact to junction leakage and junction depth

MLD and Silicon

FinFET S/D Junction Formation Needs

- Planar CMOS:
 - S/D Junction implants results in non-uniform junction profiles.
 - Short channel effects controlled with Halo & Extensions
- FinFET
 - Short channel effects controlled with Double Gate & Small W_{fin}.
 - For device with uniform current flow at top and bottom of fin, $W_1 = W_2$ is needed.
 - \rightarrow Uniform S/D doping in fin needed
 - Achieving uniform junctions with conventional implants on tall fins with short Lg is difficult.
 - \rightarrow Advanced fin doping techniques are needed

Conventional Approaches to Form Low Rs USJ's

Advanced doping and anneals are needed for USJ's with low Rs

Ultra Shallow Junctions in Silicon By Monolayer Doping (MLD)

- Extremely Simple Process
 - 1. HF Deglaze to remove native oxide
 - 2. Chemical Doping
 - Boron or
 Phosphorous
 - 3. Oxide Cap
 - 4. Anneal
 - 5. Cap Removal

Benefits of Monolayer Doping

- Sub 10-nm junctions achievable
- No implant damage to substrate
 - Very significant to LSTP and III-V as it is defect-free
 - Hence USJ with very low junction leakage
- Best known method for doping non-planar structures
- Minimal material loss associated with post implant clean-up
- Lower equipment and processing costs
- Applicable to various substrates (Si, SiGe, Ge, III-V)
- Long roadmap envisioned for MLD

UC Berkeley MLD Process for Si Substrates

http://nano.eecs.berkeley.edu/publications/MLD_NatureMat_2008.pdf

- Si wafers are treated with dilute hydrofluoric acid to remove the native SiO₂.
- The Si surface is then reacted with dopants and mesitylene as a solvent for 2.5 h at 120°C to assemble a dopant-containing monolayer.
- SiO₂ is electron-beam evaporated as a cap
- The substrate is spike annealed between 900-1050°C in Ar ambient to drive in the atoms and achieve USJs.

MLD of Si: Manufacturing Issues to Address

http://nano.eecs.berkeley.edu/publications/MLD_NatureMat_2008.pdf

- Mesitylene solvent Process: 2.5 hours @ 120°C
- Mesitylene Boiling Point (BP) is 140°C / Flash Point (FP) is 44°C
 - University work carried out in a glove box with a dry N₂ environment, and all reactions performed under argon bubbling to ensure an oxygen-free environment
- Semiconductor industry disinclined to run potentially explosive process
 - Major equipment manufacturers have declined running demonstrations with Mesitylene
- Will require integration to properly implement masks to differentiate n and p junctions
 - Typical photoresist mask will not hold up to solvents
 - Can incorporate oxide mask as part of oxide cap process

SEMATECH Plans/Progress for USJ of Si

- Reengineer process to be safer
 - Raise solvent FP
 - Lower Process Temperature
- Requirements for alternative solvent
 - Aromatic
 - Small molecular structure
 - No ligand exchange during reaction
- Requirement for reaction process
 - Process Temp 👢 Process Time 👚

P-Doping Demonstration Results

- MLD Process run in purged glove box @ supplier site with alternative solvent
- Capped with SiO₂ at SEMATECH
- Spike annealed in N₂

MLD and III-V

High Mobility for High Performance at Low Power

 For L_G<20nm, carrier velocity may be ballistic

• Note:
$$v \sim 1/\sqrt{m^*}$$

And:
$$\mu \sim 1/m^*$$

• Therefore:
$$\mu \sim v_{\theta}^2$$

- Assume τ constant
- Which implies:
 - Channel mobility μ~16x r-Si (~3500 cm²/Vs)
 - Not demonstrated for s-Si
 - New channel material with adequate *surface* channel μ
 - For example: GaAs requires $2-3x \rightarrow \mu \sim 10^4$

After: D. Antoniadis, IBM J. Res. Dev (2006)

High mobility channels (Ge, III-V based) provide for high performance (Ion) AND low power (Vcc scaling)

07-October-2010

Properties of Promising High Mobility Materials [Electrons and Holes]

		\square		\square		
Property/ Material	Si	Ge	GaAs	In _{0.53} Ga _{0.47} As	InAs	Graphene
Eg (eV)	1.1	0.66	1.4	0.75	0.35	0*
μ _n (cm²/v-sec)	1,350	3,900	4,600	>8,000	40,000	>100,000
μ_p (cm ² /v-sec)	480	1,900	500	350	<500	>100,000
m*/m _o	0.165	0.12	0.067	0.041	0.024	<0.01
Lattice mismatch to Si	0	4%	4%	8%	12%	n.A
	pMOSFET					

Parasitic Resistance and Junctions Requirements with III-V

07-October-2010

Challenges with III-V USJ Implant/Anneal Options

- Damage in the crystal lattice
 - Leakage of low power transistors
- Accurate placement of dopant profile
 - Currently devices use spike anneals to activate dopant, but unlikely to meet the targets for future generations.
- Accurate placement of dopant due to angle
 - Shrinking wells and device isolation
- Cost
 - Expensive tools, process complexity

SEMATECH MLD Process on III-V Substrates

- InGaAs pieces
 - Cleaned with acetone and isopropanol
 - Deglazed in HF
- Placed in an Ammonium Sulfide solution (NH4)₂S_x
 - Solution is maintained in a water bath at elevated temperature

How does S Passivation Work?

- Two competitive chemical reaction processes occuring
 - GaAs + S²⁻ \rightarrow GaS + As₂S₃ sulfides
 - Ga + As sulfides + $H_2O \rightarrow Ga_xO_y + As_xO_y$
- Second reaction is stronger
 - Sulfide layer formed is mostly converted into oxides
 - Oxides are soluble in water.
- One monolayer of S atoms remains on the surface
- The atomic surface density is 5.6Ex14 /cm², which represents the maximum areal sulfur dose
 - Assuming a perfect monolayer

MLD Advantage over Implantation

07-October-2010

Effect of RTA Temperature

- < 500 °C, 30 s
 - $X_{i} < 3$ nm*, R_{sh} > 1300 Ω/sq
 - Doping profile ~ 1 nm/dec
- > 500 °C, 30 s
 - $X_i = 9 \text{ nm}^*$, R_{sh} = 164 Ω/sq
 - Long diffusion tail

N_d and X_i increase with temperature

Effect of ms-Flash Anneal

Sample	R _{sh} *	μ*	n*
	Ω/sq	cm²/Vs	x10 ¹² cm ⁻²
Temp ₁	450	3200	4.3
Temp ₂	277	1460	15
RTA, 30s	164	2682	14

Ms-flash has higher near surface concentration, but not increased activation, further optimization necessary.

* VdP Hall data. ** Estimated T_p

07-October-2010

Effect of Capping Layer

- S desorbs at temps <u>></u> 250 °C
- Cap type influences S incorporation
- Attributable to temperature of deposition

MLD reverse junction leakage shows stronger temp. dependence indicating damage induced tunneling process is not dominant.

07-October-2010

Self-aligned III-V USJ with Low R_{sh}

- Self aligned junction formation without regrowth.
- Steep junctions with low R_{sh}
- Achieving X_i and R_{sh} targets

Benchmarking MLD Results

Promising process for self aligned junctions in III-V FETs for low $\ensuremath{\mathsf{R}_{\text{ext}}}$

07-October-2010

SEMATECH

MLD of III-V: Manufacturing Issues to Address

- n-dopant Ammonium sulfide solution (NH4)₂S_x, not environmentally friendly
 - Very Toxic stringent storage requirements
 - Processing limited to below 45°C
 - Off-site disposal may be required
 - BUT solutions exist

p-dopant identification challenging

Summary

- Power constrained CMOS scaling and control of short channel effects
 Challenges for junctions
- New materials and new architectures require new techniques and processes
 - FinFETS Shallow conformal doping
 - III-V Materials Shallow non-damaging doping
- SEMATECH has successfully demonstrated a 200mm manufacturable self-aligned III-V MLD USJ with low R_{sh} using wet processing
- SEMATECH's advanced process and device technologies for USJ's are enabling CMOS Scaling

Worldwide collaboration SEMATECH and ISMI members

