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Outline

• CMOS Scaling Trends and Associated Junctions 
Challenges 

• Challenges, Opportunities and Results for Ultra 
Shallow Junctions using Monolayer Doping (MLD)
– Si
– III-V

• Summary
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How Is the Industry Changing?
Consumers Demand Low Power with High 
Performance , Mobile Devices
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SEMATECH Front-End Research: 
Enabling Products: Performance-Power; Digital-Mixed 
Signal; Logic-Memory
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MOSFET Scaling Trends & Junctions Challenges 
Novel Materials and Architectures

Key InnovationsKey Innovations
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Need Conformal 
Doping and Low Rsh

Need Defect-Free Ultra 
Shallow and Low Rs Junctions
Need Defect-Free Ultra 
Shallow and Low Rs Junctions

Need Ultra Shallow and Low Rs
Junctions, Control of Short 
Channel effects
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III-V: Enabling High Performance 
AND Low Power

Power (a.u.)

Lower Power

Higher Performance
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MLD 
Goal 

Rs-Xj Benchmark

• MPU/ASIC target is 10 nm (2010) and 9 nm (2012).
– Extension junction depth target is challenging with 

implant/anneal techniques.  
– Must minimize damage to extension 

• Impact to junction leakage and junction depth
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MLD and Silicon
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FinFET S/D Junction Formation Needs

• Planar CMOS:
– S/D Junction implants results in non-uniform junction profiles.
– Short channel effects controlled with Halo & Extensions

• FinFET
– Short channel effects controlled with Double Gate & Small Wfin.
– For device with uniform current flow at top and bottom of fin, W1 = W2 is needed.

Uniform S/D doping in fin needed
– Achieving uniform junctions with conventional implants on tall fins with short Lg is 

difficult.
Advanced fin doping techniques are needed

Gate

Well

Deep
S/D

Deep
S/D

Extension
Halo

Channel

Conventional Planar Device FinFET Device

S/D S/DChannel
(undoped)

W1

W2

Wfin

Electrical
Channel
Width
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Conventional Approaches to Form 
Low Rs USJ’s

• Advanced doping and anneals are needed for USJ’s with low Rs
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Ultra Shallow Junctions in Silicon By 
Monolayer Doping (MLD)

• Extremely Simple 
Process
1. HF Deglaze to 

remove native 
oxide

2. Chemical Doping
– Boron or 

Phosphorous

3. Oxide Cap
4. Anneal
5. Cap Removal
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Benefits of Monolayer Doping

• Sub 10-nm junctions achievable

• No implant damage to substrate
– Very significant to LSTP and III-V as it is defect-free 
– Hence USJ with very low junction leakage

• Best known method for doping non-planar structures

• Minimal material loss associated with post implant clean-up

• Lower equipment and processing costs

• Applicable to various substrates (Si, SiGe, Ge, III-V)

• Long roadmap envisioned for MLD
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UC Berkeley MLD Process 
for Si Substrates

• Si wafers are treated with dilute hydrofluoric acid to 
remove the native SiO2. 

• The Si surface is then reacted with dopants and 
mesitylene as a solvent for 2.5 h at 120°C to 
assemble a dopant-containing monolayer.

• SiO2 is electron-beam evaporated as a cap 

• The substrate is spike annealed between 900-
1050°C in Ar ambient to drive in the atoms and 
achieve USJs. 

http://nano.eecs.berkeley.edu/publications/MLD_NatureMat_2008.pdf
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MLD of Si: Manufacturing 
Issues to Address

• Mesitylene solvent Process:  2.5 hours @ 120°C
• Mesitylene Boiling Point (BP) is 140°C / Flash Point 

(FP) is 44°C
– University work carried out in a glove box with a dry N2

environment, and all reactions performed under argon bubbling 
to ensure an oxygen-free environment

• Semiconductor industry disinclined to run potentially 
explosive process
– Major equipment manufacturers have declined running 

demonstrations with Mesitylene

• Will require integration to properly implement masks to 
differentiate n and p junctions
– Typical photoresist mask will not hold up to solvents
– Can incorporate oxide mask as part of oxide cap process

http://nano.eecs.berkeley.edu/publications/MLD_NatureMat_2008.pdf
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SEMATECH Plans/Progress 
for USJ of Si

• Reengineer process to be safer
– Raise solvent FP
– Lower Process Temperature

• Requirements for alternative solvent 
– Aromatic
– Small molecular structure
– No ligand exchange during reaction

• Requirement for reaction process
– Process Temp     Process Time 
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• MLD Process run in purged glove box @ supplier site with alternative 
solvent

• Capped with SiO2 at SEMATECH

• Spike annealed in N2

P-Doping Demonstration Results

Junction Depth 
@ 5E18  ~2 nm

P-doping profile 
with various 
process conditions
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MLD and III-V
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After: D. Antoniadis, IBM J. Res. Dev (2006)

• For LG<20nm, carrier velocity 
may be ballistic

• Note:
• And:
• Therefore:

– Assume τ constant

• Which implies:
– Channel mobility μ~16x r-Si 

(~3500 cm2/Vs) 
– Not demonstrated for s-Si
– New channel material with 

adequate surface channel μ
– For example: GaAs requires      

2-3x→ μ ~104

~1/ *v m
*/1~ mμ

2~ θμ v

High Mobility for High Performance 
at Low Power

High mobility channels (Ge, III-V based) provide for high 
performance (Ion) AND low power (Vcc scaling)
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Property/
Material

Si Ge GaAs In0.53Ga0.47As InAs Graphene

Eg (eV) 1.1 0.66 1.4 0.75 0.35 0*
μn (cm2/v-sec) 1,350 3,900 4,600 >8,000 40,000 >100,000
μp (cm2/v-sec) 480 1,900 500 350 <500 >100,000
m*/mo 0.165 0.12 0.067 0.041 0.024 <0.01
Lattice mismatch 
to Si

0 4% 4% 8% 12% n.A

Properties of Promising High Mobility 
Materials [Electrons and Holes]

pMOSFET nMOSFET
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Targets

Rsh = 100-200 Ω/sq

Xj = 5 -15 nm

µ = 2500 cm2/Vs

ns = 2.5x1013 cm-2

Nd = 5x1019 cm-3

Jj < 0.1A/cm2

Low defect density

IS/D leak< 100 nA/µm

Parasitic Resistance and Junctions 
Requirements with III-V
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Beam line Epi S/D MLD Plasma

Pro • Industry 
standard 
process

• High Nd

• Abrupt 
junctions

• Zero damage

• Elegant 

• Zero damage

• USJ

• Conformal

• Lower damage 
than beam line.

• Low energy for 
USJ

• Conformal

Con • Damage

• Profile 

• Activation

• Process 
complexity

• Low Rsh S/D  
extension 

• Optimization 
Required 

• Activation

• Optimization 
Required 

III-V Junction options
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Challenges with III-V USJ  
Implant/Anneal Options

• Damage in the crystal lattice
– Leakage of low power transistors 

• Accurate placement of dopant profile
– Currently devices use spike anneals to activate dopant, 

but unlikely to meet the targets for future generations. 

• Accurate placement of dopant due to angle
– Shrinking wells and device isolation 

• Cost
– Expensive tools, process complexity
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SEMATECH MLD Process on III-V 
Substrates

• InGaAs pieces  
– Cleaned with acetone and isopropanol
– Deglazed in HF

• Placed in an Ammonium Sulfide solution
(NH4)2Sx
– Solution is maintained in a water bath at elevated 

temperature
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How does S Passivation Work?

• Two competitive chemical reaction processes occuring
– GaAs + S2- GaS + As2S3 sulfides
– Ga + As sulfides + H2O GaxOy + AsxOy

• Second reaction is stronger
– Sulfide layer formed is mostly converted into oxides
– Oxides are soluble in water. 

• One monolayer of S atoms remains on the surface 

• The atomic surface density is 5.6Ex14 /cm2, which 
represents the maximum areal sulfur dose
– Assuming a perfect monolayer

Li J. Appl Phys, 78 (4) 2764 (1995)
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MLD Advantage over Implantation

No major change in 
HRXRD data after MLD 

and annealing up to 
700 oC

Increase in defect 
or relaxation post 
annealing [700 oC] 
of Implanted 
sample

High resolution X-Ray Diffraction 
on In0.53GaAs/ InP indicates lattice 
quality deteriorates with high 
anneal temperature for implanted 
sample but not for non-implanted 
or MLD sample

Si implant

Sulfur MLD

No implant 
or MLD
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Effect of RTA Temperature

• < 500 ˚C, 30 s
– Xj < 3nm*, Rsh > 1300 Ω/sq
– Doping profile ~ 1 nm/dec

• > 500 ˚C, 30 s  
– Xj = 9 nm*, Rsh = 164 Ω/sq
– Long diffusion tail

Nd and Xj increase with temperature
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RTA, 30s, 164 Ω/□

T1, ms, 450 Ω/□

T2, ms, 277 Ω/□

Effect of ms-Flash Anneal

Ms-flash has higher near surface concentration, but not increased 
activation, further optimization necessary.

Sample Rsh* µ* n*

Ω/sq cm2/Vs x1012 cm-2

Temp1 450 3200 4.3

Temp2 277 1460 15

RTA, 30s 164 2682 14

* VdP Hall data. ** Estimated Tp
Ti

Tp

time
te

m
p.

Ms- flash profile
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― PVD SiN
― ALD SiO2
― ALD Al2O3

Effect of Capping Layer

• S desorbs at 
temps > 250 °C

• Cap type 
influences S 
incorporation

• Attributable to 
temperature of 
deposition
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Temp Dependence on 
Leakage Current

MLD reverse junction leakage shows stronger temp. dependence 
indicating damage induced tunneling process is not dominant.

MLD I/I
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Self-aligned III-V USJ with Low Rsh

• Self aligned junction formation without regrowth. 
• Steep junctions with low Rsh
• Achieving Xj and Rsh targets
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Benchmarking MLD Results

SEMATECH BKM on Si
SEMATECH MLD on InGaAs
Rsh based on Hall Data 

Promising process for self aligned junctions 
in III-V FETs for low Rext
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MLD of III-V: Manufacturing Issues to 
Address

• n-dopant - Ammonium sulfide solution (NH4)2Sx, 
not environmentally friendly
– Very Toxic – stringent storage requirements
– Processing limited to below 45°C
– Off-site disposal may be required
– BUT – solutions exist

• p-dopant identification challenging
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Summary

• Power constrained CMOS scaling and control of short 
channel effects challenges for junctions

• New materials and new architectures require new techniques 
and processes
– FinFETS - Shallow conformal doping
– III-V Materials – Shallow non-damaging doping

• SEMATECH has successfully demonstrated a 200mm 
manufacturable self-aligned III-V MLD USJ with low Rsh using 
wet processing

• SEMATECH’s advanced process and device technologies for 
USJ’s are enabling CMOS Scaling
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Worldwide collaboration
SEMATECH and ISMI members 
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