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 CMOS Scaling Trends and Associated Junctions
Challenges

» Challenges, Opportunities and Results for Ultra
Shallow Junctions using Monolayer Doping (MLD)
— Si
— -V

* Summary
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How Is the Industry Changing? 7
Consumers Demand Low Power with High SEMATECH
Performance , Mobile Devices

25% -
) 20%
S 20% -
% 16%
o 15% =
«  15% 4 13%, —
o
D
—
T 10% -
o
o
£ 5% - 4%
0
0% -
O O
Q <
R
&8
Q Q.O
ho)
Qé"”

W 1995 & 2009

Source: 1995 Garfner Dataguesi; 2009 Semico Research
07-October-2010 SEMATECH Joel Barnett 3




SEMATECH Front-End Research:
7

Enabling Products: Performance-Power; Digital-Mixed

Signal; Logic-Memory S SEMATECH
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MOSFET Scaling Trends & Junctions Challenges[\

Novel Materials and Architectures

\
SEMATECH
New Mat’l/Structure 2015-2019

Si-Ge Device [lI-V Device
sﬁr;\p TaN/ ZrO,/TiN/TaN gate stack
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C gisns. [ SEMATECH
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Non-planar

FinFET/trigate/Nanowire
[~ === = = . SEMATECH
Need Ultra Shallow and Low Rs I 1T |———— — = - ===
Junctions, Control of Short Need Conformal ; Need Defect-Free Ultra |
I Channel effects I Doping and Low R, Shallow and Low Rs Junctions
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I1I-V: Enabling High Performance P

AND Low Power SEMATECH
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Rs-X] Benchmark 7\
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- MPU/ASIC target is 10 nm (2010) and 9 nm (2012).

— Extension junction depth target is challenging with
implant/anneal techniques.

— Must minimize damage to extension
- Impact to junction leakage and junction depth
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MLD and Silicon
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FINFET S/D Junction Formation Needs 7\

\
SEMATECH
Conventional Planar Device FinFET Device
— Electrical
> Channel
CELE Width
Channel
Extension
Halo Channel
(undoped)
Well /
Wfin

>

/
*  Planar CMOS:

— S/D Junction implants results in non-uniform junction profiles.
— Short channel effects controlled with Halo & Extensions

* FinFET
— Short channel effects controlled with Double Gate & Small W .
— For device with uniform current flow at top and bottom of fin, W, = W, is needed.
- Uniform S/D doping in fin needed

— Achieving uniform junctions with conventional implants on tall fins with short Lg is
difficult.

- Advanced fin doping techniques are needed
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Conventional Approaches to Form
Low Rs USJ’s SEMATECH /
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« Advanced doping and anneals are needed for USJ’s with low Rs

07-October-2010 SEMATECH Joel Barnett 10




Ultra Shallow Junctions in Silicon By 7\
Monolayer Doping (MLD) SEMATECH

*  Extremely Simple

Process Ny
1. HF Deglaze to ? l,
remove native e LGS

oxide
2. Chemical Doping

— Boron or 100 FA — 1050C
PhOSphOFOUS —~ 102 | —— 950°C
3. Oxide Cap E
4. Anneal a%
5. Cap Removal

5 10 15 20 25
Depth (nm)
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Benefits of Monolayer Doping
SEMATECH

Sub 10-nm junctions achievable

No implant damage to substrate
Very significant to LSTP and IlI-V as it is defect-free
Hence USJ with very low junction leakage

Best known method for doping non-planar structures
Minimal material loss associated with post implant clean-up

Lower equipment and processing costs

Applicable to various substrates (Si, SiGe, Ge, llI-V)

Long roadmap envisioned for MLD

07-October-2010 SEMATECH Joel Barnett 12




UC Berkeley MLD Process
for Si Substrates SEMATECI"I

http://nano.eecs.berkeley.edu/publications/MLD_NatureMat_2008.pdf

Si wafers are treated with dilute hydrofluoric acid to
remove the native SiO.,.

The Si surface is then reacted with dopants and
mesitylene as a solvent for 2.5 h at 120°C to
assemble a dopant-containing monolayer.

SiO, is electron-beam evaporated as a cap

The substrate is spike annealed between 900-
1050°C in Ar ambient to drive in the atoms and
achieve USJs.
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MLD of Si: Manufacturing

Issues to Address SEMATECH
!

http://nano.eecs.berkeley.edu/publications/MLD_NatureMat_2008.pdf
Mesitylene solvent Process: 2.5 hours @ 120°C

Mesitylene Boiling Point (BP) is 140°C / Flash Point
(FP) is 44°C
University work carried out in a glove box with a dry N,,

environment, and all reactions performed under argon bubbling
to ensure an oxygen-free environment

Semiconductor industry disinclined to run potentially
explosive process

Major equipment manufacturers have declined running
demonstrations with Mesitylene

Will require integration to properly implement masks to
differentiate n and p junctions

Typical photoresist mask will not hold up to solvents

Can incorporate oxide mask as part of oxide cap process
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SEMATECH Plans/Progress
for USJ of Si SEMATECH /

Reengineer process to be safer
Raise solvent FP
Lower Process Temperature

Requirements for alternative solvent
Aromatic
Small molecular structure
No ligand exchange during reaction

Requirement for reaction process
Process Temp ||l Process Time 1T
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P-Doping Demonstration Results L&

SEMATECH
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- MLD Process run in purged glove box @ supplier site with alternative
solvent

- Capped with SiO, at SEMATECH

*  Spike annealed in N,
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MLD and lll-V
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High Mobility for High Performance

at Low Power
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SEMATECH

For L;<20nm, carrier velocity
may be ballistic

Note: V~1/\/W‘
And: u~1/m*

2
Therefore: U ~V,
— Assume t constant

Which implies:
— Channel mobility u~16x r-Si
(~3500 cm?/Vs)
— Not demonstrated for s-Si

— New channel material with
adequate surface channel pu

— For example: GaAs requires
2-3x—> u ~104

After: D. Antoniadis, IBM J. Res. Dev (2006)

High mobility channels (Ge, IlI-V based) provide for high
performance (lon) AND low power (Vcc scaling
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Properties of Promising High Mobility -\

Materials [Electrons and Holes] SEMATECH
Property/ Si H Ge ‘ GaAs Fno_sz,,Gao_uAs) InAs Graphene
Material

Eg (eV) 1.1 0.66 1.4 0.75 0.35 0*

1, (cm?/v-sec) 1,350 @ 3,900 @ 4,600 >8,000 40,000 >100,000
b, (cm?/v-sec) 480 © 1,900 500 350 <500 >100,000
m*/m, 0.165 @ 0.12 0.067 0.041 0.024 <0.01
Lattice mismatch 0 4% 4% 8% 12% n.A
to Si \ )

PMOSFET NMOSFET
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Parasitic Resistance and Junctions A\

Requirements with [1l-V SEMATECH
_Pitch =55nm -
L=30mm | Lle=5m  L;=15m Targets

- =

R, = 100-200 Q/sq

ILD X =5-15nm

u =2500 cm?/Vs

t, = 5nm
N n, = 2.5x10" cm-2
T -
_ o = 19 -3
. / hetero buffer Ny =95x10" cm
Junctions TR

silicon substrate

Low defect density

IS/D leak S 100 nA/“m
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I11-V Junction options 7~

SEMATECH

Beam line
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S/D Plasma
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ulira shallow SD
formation

RTA |\Mz \Cr e ‘
ey

Pro |° Industry * High Nd Elegant - Lower damage
standard - Abrupt Zero damage than beam line.
process junctions USY * Low energy for

. usJ
Zero damage Conformal
+ Conformal
Con | - Damage * Process Optimization * Optimization
. Profile complexity Required Required
. Activation * Low Ry, S/D Activation
extension
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Challenges with llI-V USJ

Implant/Anneal Options SEMATECE

Damage in the crystal lattice
Leakage of low power transistors

Accurate placement of dopant profile

Currently devices use spike anneals to activate dopant,
but unlikely to meet the targets for future generations.

Accurate placement of dopant due to angle
Shrinking wells and device isolation

Cost
Expensive tools, process complexity
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SEMATECH MLD Process on -V 7~
Substrates SEMATECH

* InGaAs pieces
— Cleaned with acetone and isopropanol
— Deglazed in HF

* Placed in an Ammonium Sulfide solution
(NH4),S,
— Solution is maintained in a water bath at elevated
temperature
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How does S Passivation Work?
SEMATECH /

Two competitive chemical reaction processes occuring
GaAs + S = GaS + As,S; sulfides
Ga + As sulfides + H,O Ga,0, + As,O,

Second reaction is stronger
Sulfide layer formed is mostly converted into oxides
Oxides are soluble in water.

One monolayer of S atoms remains on the surface

The atomic surface density is 5.6Ex14 /cm?2, which
represents the maximum areal sulfur dose

Assuming a perfect monolayer

Li J. Appl Phys, 78 (4) 2764 (1995)
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MLD Advantage over Implantation

No implant
or MLD

Deep bise: 700C anneal

'EMATECH )
e

Frase Raw HRXRDtaken High resolution X-Ray Diffraction
ep e on Iny 53GaAs/ InP indicates lattice
quality deteriorates with high
anneal temperature for implanted
sample but not for non-implanted defects

or MLD sample
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Effect of RTA Temperature 7

\
SEMATECH
. <500 °C. 30 WE 1E+22 Temp 1, 1518 Q/o
, OU S S 1E+21 4 Temp 2, 1385 Qfo
— X;<3nm*, Ry, > 1300 Q/sq S cion Emgj lhotive
— Doping profile ~ 1 nm/dec = _,
= 1E+19 qUf
- >500°C,30s |
~ X =9 nm*, Ry, = 164 Q/sq S g7 |1
— Long diffusion tail N
1E+16 -
0

Depth (nm)

Ny and X, increase with temperature
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Effect of ms-Flash Anneal 7~

SEMATECH
@ 1E+22
Sample Ren* u* n* S 1Epq | ——FRTA 305 1640/
24 T1, ms, 450 Q/o
Q/sq | cm2/Vs | x1012 cm2 £ 1E+20 -
8 1E+19 _ —T2, ms, 277 Q/c
Temp, 450 | 3200 4.3 s
Temp, 277 | 1460 15 Q
o
RTA, 30s 164 2682 14 CwJ ‘
0 50 100 150
Depth (nm)

Ms-flash has higher near surface concentration, but not increased

activation, further optimization necessary. Ms- fiash profile

Tor
T r

time

temp.

*VdP Hall data. ** Estimated Tp
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Effect of Capping Layer

SEMATECH,
S desorbs at o S 1:? Voo
temps > 250 °C = DAL,
.E s 1E+20
Cap type S E {EH9-
influences S S ™ 1E+18 -
. . U i
Incorporation o TEH1T
_ 1E+16 |
Attributable to 0 50 100 150
temperature of Depth (nm)
deposition - rott |5 oy | 1o
- Dopant Hall (cm® Vish
FVD 51N 35E+13 104 2570
AL 810, 4E+13 2235 1570
AL AlaO4 19E+13 2968 1830
2507 810, 25E+13 291 1310
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Temp Dependence on
Leakage Current

defects
MLD g e
1 L T T T T T T T L
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. — -2 /./"' E A
R 'IE-41; Jj 0.13 A.cm 1 =
1 = 1 o
< 1E-64 =
— ] 1 -
) -8 ] —— 100K ~
-% 1E 8, 150 K , g
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1E-12; —— 300K ] S reduction
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2 10 1 2 0 05 00 05 10
Junction bias (-V) Junction Bias (V)

MLD reverse junction leakage shows stronger temp. dependence

indicating damage induced tunneling process is not dominant.
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Self-aligned IlI-V USJ with Low R, 7~

SEMATECH
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« Self aligned junction formation without regrowth.

« Steep junctions with low R,
* Achieving X; and Ry, targets
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Benchmarking MLD Results pam
SEMATECH

SEMATECH MLD on InGaAs
R, based on Hall Data

SEMATECH BKM on Si

Promising process for self aligned junctions
in l1I-V FETSs for low R_
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MLD of IlI-V: Manufacturing Issues to
Address SEMATECH

n-dopant - Ammonium sulfide solution (NH4),S,,
not environmentally friendly
Very Toxic — stringent storage requirements
Processing limited to below 45°C
Off-site disposal may be required
BUT — solutions exist

p-dopant identification challenging
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Summary x
SEMATECI;I,,,_.,:-"

Power constrained CMOS scaling and control of short
channel effects mw———=">> challenges for junctions

New materials and new architectures require new techniques
and processes

FINFETS - Shallow conformal doping

l1I-V Materials — Shallow non-damaging doping

SEMATECH has successfully demonstrated a 200mm
manufacturable self-aligned IlI-V MLD USJ with low R, using
wet processing

SEMATECH'’s advanced process and device technologies for
USJ'’s are enabling CMOS Scaling

07-October-2010 SEMATECH Joel Barnett 33




Worldwide collaboration 7~
SEMATECH and ISMI members SEMATECH
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